\qquad

Section 5-1 Review

Factor the following using any of the methods we have discussed. These are not equations, you do not need to solve for the variable. Do the factoring only.

1) $\mathrm{n}^{2}-100$
2) $\mathrm{x}^{2}+11 \mathrm{x}+28$
3) $2 y^{5}-8 y^{4}$
4) $12 x^{2}+23 x-9$
5) $a^{2}-16 a b+64 b^{2}$
6) $\mathrm{w}^{3}+125$
7) $5 x^{2}+5 x-60$
8) $6 a^{2} b+2 a b+20 a b^{3}$
9) $4 r^{3}-9 r$

Give the roots (solutions or answers) to the following "pre-factored" equations or graphs. There should be NO WORK to do!!!!
10)
$(x-8)(x+12)=0$
11)
$(2 y-5)(3 y-2)=0$
$y=$ \qquad
12) $5 b(b+2)=0$
$b=$ \qquad

Root(s): \qquad
14)

Roots(s): \qquad

Solve the following equations by factoring first, then stating the solutions (or roots).
15) $a^{2}-17 a+72=0$
16) $9 y^{3}-36 y^{2}=0$
17) $n^{2}+18 n=-81$
18) $15 \mathrm{x}^{2}+43 \mathrm{x}+8=0$
19) $d^{2}-14=5 d$
20) $100 m^{2}-1=0$

Write a quadratic equation with the given roots (solutions or answers). Use whatever variable you like.
EXAMPLE: Roots: -6 and 3
If $x=-6$, then the () would be $(x+6)$, if $x=3$ then the () would be $(x-3)$
Now, simply multiply (FOIL) them out:

$$
\begin{aligned}
& (x+6)(x-3) \\
& x^{2}-3 x+6 x-18 \\
& x^{2}+3 x-18
\end{aligned}
$$

Lastly, add $=0$ on the end to make it an equation $\quad x^{2}+\mathbf{3 x}-\mathbf{1 8}=\mathbf{0}$
21) Roots: 7 and -7
22) Roots: -5 and $-\frac{2}{3}$
23) Roots: 0 and -12
24) Roots: $\frac{1}{4}$ and $\frac{4}{3}$

