Name ______

Algebra II Section 5-1 Review

Factor the following using any of the methods we have discussed. These are not equations, you do not need to solve for the variable. Do the factoring only.

1)	n ² – 100	2)	x ² + 11x + 28	3)	$2y^5 - 8y^4$
4)	$12x^2 + 23x - 9$	5)	a ² – 16ab + 64b ²	6)	w ³ + 125
7)	5x ² + 5x - 60	8)	6a²b + 2ab + 20ab³	9)	4r ³ – 9r

Give the roots (solutions or answers) to the following "pre-factored" equations or graphs. There should be NO WORK to do!!!!

<u>Solve</u> the following equations by <u>factoring</u> first, then stating the solutions (or roots).

15)
$$a^2 - 17a + 72 = 0$$
 16) $9y^3 - 36y^2 = 0$ 17) $n^2 + 18n = -81$

18)
$$15x^2 + 43x + 8 = 0$$
 19) $d^2 - 14 = 5d$ 20) $100m^2 - 1 = 0$

Write a quadratic equation with the given roots (solutions or answers). Use whatever variable you like.

EXAMPLE: Roots: -6 and 3 If x = -6, then the () would be (x + 6), if x = 3 then the () would be (x - 3) Now, simply multiply (FOIL) them out: (x + 6)(x - 3) $x^{2} - 3x + 6x - 18$ $x^{2} + 3x - 18$ Lastly, add = 0 on the end to make it an equation $x^{2} + 3x - 18 = 0$

21) Roots: 7 and -7 22) Roots: -5 and $-\frac{2}{3}$

23) Roots: 0 and -12

24) Roots:
$$\frac{1}{4}$$
 and $\frac{4}{3}$