SECTION 5-2 EXTRA PRACTICE

Fill in the i-chart --------->

$$
\begin{aligned}
\sqrt{-1} & = \\
i^{2} & =\square \\
i^{3} & =\square \\
i^{4} & =
\end{aligned}
$$

Simplify the following. Factor-tree these bad boys! Don't forget to pop an " i " out for negative square roots.

1) $\sqrt{99}$
2) $\sqrt{-32}$
3) $\sqrt{-49 a^{2} b^{3}}$
4) $\sqrt{10} \cdot \sqrt{50}$
5) $(3 \sqrt{11})(2 \sqrt{-11})$
6) $\sqrt{-4} \cdot \sqrt{-25}$

Divide. Treat them like separate problems.
7) $\sqrt{\frac{6}{121}}$
8) $\frac{\sqrt{70}}{\sqrt{35}}$

Divide. Put them together as one square root, divide, then simplify!

Add or subtract the following complex numbers. Should you be multiplying at any point???? NO!!!!
9) $(6+12 \mathrm{i})+(4-7 \mathrm{i})$
10) $(8-3 \mathrm{i})-(\mathrm{i}-5)$
11) $-4(1+2 \mathrm{i})+4$

Multiply. Consult the "i"-chart after you do the multiplication. \#14 IS a FOIL problem!
12) $\quad\left(7 i^{3}\right)\left(2 i^{5}\right)$
13) $\left(5 i^{7}\right)^{2}$
14) $(5+2 i)(5-3 i)$

Name the conjugate for each. There is no work to do, just write it in the blank, and DONE!
15) 17-12i \qquad
16) $-4+4 i$ \qquad
17) $8+6 i \sqrt{11}$

Simplify by eliminating the " i " from the denominator. One thing on the bottom - multiply by just " i ". Two things on the bottom - multiply by the conjugate. \#20 is the toughest one on the whole sheet.
18) $\frac{-5}{2 i}$
19) $\frac{3}{1+2 i}$
20) $\frac{2+3 i}{3-2 i}$

Solve the equations by moving everything to the other side, then taking a square root to get rid of the x^{2}. All answers to equations must include this symbol: 士 Don't forget to pop any "i"s out!
21) $\mathrm{x}^{2}+100=0$
22) $5 y^{2}-40=0$
23) $2 \mathrm{x}^{2}+19=1$

