\qquad

Determine if the following can be factored (or rewritten) so that it contains a quadratic (yes or no).

1) \qquad $x^{22}-3 x^{11}-18$
2) \qquad $8 y^{3 / 7}+5 y^{3 / 49}-12$
3) \qquad $r^{5}+7 r^{3}$

Solve each equation by first factoring it.
4) $8 \mathrm{~h}^{3}-125=0$
5) $x^{5}-13 x^{3}+40 x=0$
6) $2 y^{4}-3 y^{2}-5=0$
7) $\mathrm{x}^{3}-3 \mathrm{x}^{2}-4 \mathrm{x}+12=0$

Given an imaginary root, according to the Complex Conjugates Theorem, give one other root that must exist.
8) $2-14 \mathrm{i}$, \qquad 9) $-1+3 \mathrm{i}$, \qquad 10) -10 i , \qquad

Write a polynomial function of least degree that has the following roots.
11) roots: $1,6,-2$
12) roots: 5 and -4 i

For each function, create a list of possible rational zeros.
13) $f(x)=x^{4}+7 x^{3}-3 x-28$
p: \qquad
$\mathrm{q}:$ \qquad p / q : \qquad
14) $g(x)=4 x^{3}-4 x^{2}+x+25$
\qquad
q : \qquad
p/q: \qquad

Find all the zeros for each of the following functions. You may want to create a p\&q list, and you must show proof!
15) $f(x)=2 x^{4}+7 x^{3}-2 x^{2}-19 x-12$
16) $g(x)=x^{4}+6 x^{2}+20 x$

