\qquad

For \#1-10, use the following functions: $\quad f(x)=4 x+3 \quad g(x)=2 x-5 \quad h(x)=x^{2}-1$

1) \quad Find $(f+g)(x)$
2) \quad Find $(h-g)(x)$
3) \quad Find $(f \cdot g)(x)$
4) \quad Find $(h \circ f)(x)$

For the following problems, plug in the number for one function, then take each answer to plug into the next function.
5) $\quad \mathrm{f}(\mathrm{g}(7))$
6) $h[f(-2)]$
7) $\quad(\mathrm{g} \circ \mathrm{h})(5)$
8) $g[f(11)]$
9) $\quad \mathrm{f}(\mathrm{g}(\mathrm{h}(1)))$
10) $\mathrm{h}[(\mathrm{g} \circ \mathrm{f})](-3)$

For each pair of functions (in coordinate form), find $f \circ g$ and $g \circ f$, if they exist. If one does not exist do not include it in your answer.
11) $\mathrm{f}=\{(1,-9),(0,0),(-3,8),(-5,-5)\}$

$$
f \circ g=
$$

\qquad $\mathrm{g}=\{(0,-3)(-5,0),(-7,1),(-9,0)\}$

$$
\mathrm{g} \circ \mathrm{f}=
$$

\qquad
12) Use the same functions listed in \#11, but this time write their inverse functions.

$$
\mathrm{f}^{1}=
$$

$$
\mathrm{g}^{-1}=
$$

\qquad
13) Prove (or disprove) the following functions are inverses of one another. (find $f \circ g$ and $g \circ f$ to determine if the both equal " x ")

$$
\begin{aligned}
& f(x)=2 x-9 \\
& g(x)=\frac{1}{2} x+9
\end{aligned}
$$

the following functions; a) find their inverse equation - show work in the box, b) graph both the original function and its inverse on the grid provided. Be sure to label each as either " y " or " y^{-1} ".
14)

$$
y=4 x+3
$$

15)

$$
y=\frac{2}{3} x-2
$$

17) $y=4$
16)

					\mathbf{A}			

