Sectio Revie	on 7-1 & 7-2 w	Name			
For #2	1-10 , use the following fu	nctions:	f(x) = 4x + 3	g(x) = 2x - 5	$\mathbf{h}(\mathbf{x}) = \mathbf{x}^2 - 1$
1)	Find $(f + g)(x)$		2)	Find $(h - g)(x)$	
3)	Find $(f \cdot g)(x)$		4)	Find $(h \circ f)(x)$	

For the following problems, plug in the number for one function, then take each answer to plug into the next function.

5) f(g(7)) 6) h[f(-2)] 7) $(g \circ h)(5)$

8)
$$g[f(11)]$$
 9) $f(g(h(1)))$ 10) $h[(g \circ f)](-3)$

For each pair of functions (in coordinate form), find $f \circ g$ and $g \circ f$, if they exist. If one does not exist do not include it in your answer.

11)	$f = \{ (1, -9), (0, 0), (-3, 8), (-5, -5) \}$ g = { (0, -3) (-5, 0), (-7, 1), (-9, 0) }	f • g =	
		g • f =	

12) Use the same functions listed in #11, but this time write their inverse functions.

 $f^{1} = _$ _____ $g^{-1} = _$ _____

13) Prove (or disprove) the following functions are inverses of one another. (find f \circ g and g \circ f to determine if the both equal "x") f(x) = 2x - 9 $g(x) = \frac{1}{2}x + 9$

For the following functions; a) find their inverse equation – show work in the box, b) graph both the original function and its inverse on the grid provided. Be sure to label each as either "y" or " y^{-1} ".

