EXERCISE A

Match each function with its graph.

1) $y=5^{x}$
2) $y=2(5)^{x}$
3) $y=\left(\frac{1}{5}\right)^{x}$
a.

b.

c.

Sketch the graph of each function. Then state the function's domain and range.
4) $y=3(4)^{x}$
5) $y=2\left(\frac{1}{3}\right)^{x}$

Determine whether each function represents exponential growth or decay.
6) $y=(0.5)^{x}$
7) $y=0.3(5)^{x}$

Write an exponential function for the graph that passes through the given points.
8) $(0,3) \&(-1,6)$
9) $(0,-18) \&(-2,-2)$

Solve each equation. Check your solution.
10) $2^{\mathrm{n}+4}=\frac{1}{32}$
11) $9^{2 y-3}=27^{y}$
12) $4^{3 \mathrm{x}+2}=\frac{1}{256}$

Solve each inequality. Check your solution.
13) $5^{2 x+3} \leq 125$
14) $3^{3 x-2}>81$
15) $4^{4 a+6} \leq 16^{a}$

EXERCISE B

Sketch the graph of each function. Then state the function's domain and range.
16) $y=3^{x}$
17) $y=5(2)^{x}$
18) $y=0.5(4)^{x}$
19) $\mathrm{y}=\left(\frac{1}{3}\right)^{x}$

Determine whether each function represents exponential growth or decay.
20) $y=3.5^{x}$
21) $y=2(4)^{x}$
22) $y=0.4\left(\frac{1}{3}\right)^{x}$
23) $\mathrm{y}=3\left(\frac{5}{2}\right)^{x}$
24) $y=30^{-x}$
25) $y=0.2(5)^{-x}$

Write an exponential function for the graph that passes through the given points.
26) $(0,-2) \&(-2,-32)$
27) $(0,7) \&(2,63)$
28) $(0,-0.3) \&(5,-9.6)$
29) The number of bacteria in a colony is growing exponentially.
a) Write an exponential function to model the population y of bacteria \boldsymbol{x} hours after 2 p.m.
b) How many bacteria were there at 7 p.m. that day?

Solve each equation. Check your solution.
30) $2^{3 \mathrm{x}+5}=128$
31) $\left(\frac{1}{9}\right)^{m}=81^{m+4}$
32) $\left(\frac{1}{7}\right)^{y-3}=343$
33) $36^{2 \mathrm{p}}=216^{\mathrm{p}-1}$

Solve each inequality. Check your solution.
34) $3^{\mathrm{n}-2}>27$
35) $32^{5 \mathrm{p}+2} \geq 16^{5 \mathrm{p}}$
36) $16^{\mathrm{n}}<8^{\mathrm{n}+1}$
37) $2^{2 \mathrm{n}} \leq \frac{1}{16}$

EXERCISE C

38) Suppose you deposit a principal amount of \boldsymbol{P} dollars in a bank account that pays compound interest.

If the annual interest rate is \boldsymbol{r} (expressed as a decimal) and the bank makes interest payments \boldsymbol{n} times every year, the amount of money \boldsymbol{A} you would have after \boldsymbol{t} years is given by:
$\mathrm{A}(\mathrm{t})=P\left(1+\frac{r}{n}\right)^{n t}$

a) Write an equation giving the amount of money you would have after \boldsymbol{t} years if you deposit $\$ 1000$ into an account paying 4% annual interest compounded quarterly (four times per year).
b) Find the account balance after 20 years.

ANSWERS:

1)	a	$11)$	$\mathrm{y}=-3$	$19)$	$\mathrm{R}=\mathrm{y}>0$	$29 \mathrm{~b})$	$\approx 1,008,290$
3)	b	$13)$	$\mathrm{x} \leq 0$	$21)$	growth	$31)$	$-8 / 3$
5)	$\mathrm{D}=$ all reals	$15)$	$\mathrm{a} \leq-3$	$23)$	growth	$33)$	-3
	$\mathrm{R}=\mathrm{y}>0$	$17)$	$\mathrm{D}=$ all reals	$25)$	decay	$35)$	$\mathrm{p} \geq-2$
7)	growth		$\mathrm{R}=\mathrm{y}>0$	$27)$	$\mathrm{y}=7(3)^{\mathrm{x}}$	$37)$	$\mathrm{n} \leq-2$
9)	$\mathrm{y}=-18(3)^{\mathrm{x}}$	19)	$\mathrm{D}=$ all reals	29a)	$\mathrm{y}=100(6.32)^{\mathrm{x}}$		

