## **EXERCISE** A

Match each function with its graph.



Sketch the graph of each function. Then state the function's domain and range.

4) 
$$y = 3(4)^x$$
 5)  $y = 2\left(\frac{1}{3}\right)^x$ 

Determine whether each function represents exponential *growth* or *decay*.

6) 
$$y = (0.5)^x$$
 7)  $y = 0.3(5)^x$ 

Write an exponential function for the graph that passes through the given points.

Solve each equation. Check your solution.

10) 
$$2^{n+4} = \frac{1}{32}$$
 11)  $9^{2y-3} = 27^y$  12)  $4^{3x+2} = \frac{1}{256}$ 

Solve each inequality. Check your solution.

13) 
$$5^{2x+3} \le 125$$
 14)  $3^{3x-2} > 81$  15)  $4^{4a+6} \le 16^{a}$ 

**EXERCISE B** 

Sketch the graph of each function. Then state the function's domain and range.

16) 
$$y = 3^x$$
 17)  $y = 5(2)^x$  18)  $y = 0.5(4)^x$  19)  $y = \left(\frac{1}{3}\right)^x$ 

Determine whether each function represents exponential *growth* or *decay*.

- 20)  $y = 3.5^x$  21)  $y = 2(4)^x$  22)  $y = 0.4 \left(\frac{1}{3}\right)^x$  23)  $y = 3 \left(\frac{5}{2}\right)^x$
- 24)  $y = 30^{-x}$  25)  $y = 0.2(5)^{-x}$

Write an exponential function for the graph that passes through the given points.

26) (0, -2) & (-2, -32)27) (0, 7) & (2, 63)28) (0, -0.3) & (5, -9.6)

29) The number of bacteria in a colony is growing exponentially.

a) Write an exponential function to model the population y of bacteria x hours after 2 p.m.

b) How many bacteria were there at 7 p.m. that day?

Solve each equation. Check your solution.

30) 
$$2^{3x+5} = 128$$
 31)  $\left(\frac{1}{9}\right)^m = 81^{m+4}$  32)  $\left(\frac{1}{7}\right)^{y-3} = 343$  33)  $36^{2p} = 216^{p-1}$ 

Solve each inequality. Check your solution.

34) 
$$3^{n-2} > 27$$
 35)  $32^{5p+2} \ge 16^{5p}$  36)  $16^n < 8^{n+1}$  37)  $2^{2n} \le \frac{1}{16}$ 



## **EXERCISE** C

38) Suppose you deposit a principal amount of P dollars in a bank account that pays compound interest. If the annual interest rate is r (expressed as a decimal) and the bank makes interest payments n times every year, the amount of money A you would have after t years is given by:

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$



a) Write an equation giving the amount of money you would have after t years if you deposit \$1000 into an account paying 4% annual interest compounded quarterly (four times per year).

b) Find the account balance after 20 years.

| ANSWERS: |                |     |                  |      |                     |      |                  |
|----------|----------------|-----|------------------|------|---------------------|------|------------------|
| 1)       | a              | 11) | y = -3           | 19)  | R = y > 0           | 29b) | ≈1,008,290       |
| 3)       | b              | 13) | x <u>&lt;</u> 0  | 21)  | growth              | 31)  | -8/3             |
| 5)       | D = all reals  | 15) | a <u>&lt;</u> −3 | 23)  | growth              | 33)  | -3               |
|          | R = y > 0      | 17) | D = all reals    | 25)  | decay               | 35)  | $p \ge -2$       |
| 7)       | growth         |     | R = y > 0        | 27)  | $y = 7(3)^{x}$      | 37)  | n <u>&lt;</u> −2 |
| 9)       | $y = -18(3)^x$ | 19) | D = all reals    | 29a) | $y = 100(6.32)^{x}$ |      |                  |