Write each quadratic equation in vertex form $\left[y=a(x-h)^{2}+k\right]$,
if not already in that form. Then identify the vertex, axis of symmetry and direction of opening.

1) $y=5(x+3)^{2}-1$
2) $y=-(x-8)^{2}+5$
3) $y=x^{2}+8 x-3$
4) $y=x^{2}-8 x+16$

Graph each function.
5) $y=3(x+3)^{2}$
6) $f(x)=-\frac{1}{3}(x-1)^{2}+3$
7) $y=x^{2}-2 x-5$
8) $f(x)=x^{2}+4 x$

Write an equation in vertex form for the parabola shown in each graph below.
9)

10)

11)

EXERCISE B

Write each quadratic equation in vertex form $\left[y=a(x-h)^{2}+k\right]$,
if not already in that form. Then identify the vertex, axis of symmetry and direction of opening.
12) $y=-2(x+3)^{2}$
13) $y=\frac{1}{3}(x-1)^{2}+2$
14) $y=x^{2}-4 x$
15) $y=x^{2}-6 x+1$
16) $y=5 x^{2}-6$
17) $y=-8 x^{2}+3$

Graph each function.
18) $y=4(x+3)^{2}+1$
19) $f(x)=-(x-5)^{2}-3$
20) $y=x^{2}+6 x+2$
21) $y=x^{2}-8 x+16$

Write an equation in vertex form for the parabola shown in each graph below.
22)

23)

24)

EXERCISE C

Graph each function.
25) $y=-4 x^{2}+16 x-11$
26) $\mathrm{y}=-\frac{1}{2} x^{2}+5 x-\frac{27}{2}$

Write each function in vertex form.
27) $f(x)=4 x^{2}+24 x$
28) $y=3 x^{2}+3 x-1$

Write an equation in vertex form for the parabola with the given coordinates.
29) vertex: $(-4,3)$ point: $(-3,6)$
30) vertex: $(5,4)$ point: $(6,1)$
31) NASA's KC135A aircraft flies in a parabolic arc to simulate the weightlessness experienced by astronauts in space. The height \boldsymbol{h} of the aircraft (in feet) \boldsymbol{t} seconds after it begins its parabolic flight can be modeled by the equation: $h(t)=-9.09(t-32.5)^{2}+34,000$. What is the maximum height of the aircraft during this maneuver and how long into its arc does it occur?

ANSWERS:

1) $\mathrm{V}(-3,-1)$
$x=-3$
2) $y=4(x-2)^{2}$
up
3) $\mathrm{y}=-\frac{1}{2}(x+2)^{2}-3$
4) $y=(x+4)^{2}-19$
$\mathrm{V}(-4,-19)$
$x=-4$, up
5) $V(1,2)$
$x=1$
up
6) $y=(x-3)^{2}-8$
$\mathrm{V}(3,-8)$
$x=3$, up
7) $y=-8(x+0)^{2}+3$
$\mathrm{V}(0,3)$
$\mathrm{x}=0$, up

18-21) See Mr. Paull
23) $\mathrm{y}=-\frac{2}{3}(x-3)^{2}$

25-26) See Mr. Paull
27) $f(x)=4(x+3)^{2}-36$
29) $y=3(x+4)^{2}+3$
31) $34,000 \mathrm{ft}, 32.5 \mathrm{sec}$.

