EXERCISE A

Solve the following equations. Consider factoring whenever possible.

1) $\mathrm{x}^{2}+4=0$
2) $x^{3}+4 x^{2}-21 x=0$
3) $\mathrm{x}^{3}+2 \mathrm{x}^{2}-9 \mathrm{x}-18=0$

Given a zero of a polynomial, name the complex conjugate that must also be a zero for the polynomial.
4) $11-4 i$
5) $7+2 i$
6) $-1-6 i$
7) $-63 i$

Write a polynomial function of least degree with integral coefficients that has the given zeros.
8)
9) $3,-3,4$
10) $-1,2,3$
11) $5,2 i$

EXERCISE B

Solve the following equations. Consider factoring whenever possible.
12) $x^{3}+9 x=0$
13) $\mathrm{x}^{4}-81=0$
14) $\mathrm{x}^{3}+\mathrm{x}-4=4 \mathrm{x}^{2}$
15) $4 x^{4}-15 x^{2}=4$

Given a zero of a polynomial, name the complex conjugate that must also be a zero for the polynomial.
16) $7+3 i$
17)
18) $22-i$
19) $8 i$

Write a polynomial function of least degree with integral coefficients that has the given zeros.
20)
$-4,1,5$
21)
$-2,2,4,6$
22) $4 i, 3,-3$
23) $2 i, 3 i, 1$

EXERCISE C

24) Write a polynomial function of least degree with zeros: $9,1+2 i$

25) Antonio is preparing to make an ice sculpture. Before he begins, he wants to reduce a 3 ft . by 4 ft . by 5 ft . block of ice by shaving off the same amount from the length, width and height. He wants the reduced volume to be 24 cubic feet.
a) Write a polynomial equation to model it.
b) How much should he take from each dimension?
ANSWERS:

1)	$\mathrm{x}= \pm 2 i$	$11)$	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-5 \mathrm{x}^{2}+4 \mathrm{x}-20$
3)	$\mathrm{x}=-2, \pm 3$	21)	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-10 \mathrm{x}^{3}+20 \mathrm{x}^{2}$
5)	$7-2 i$	$13)$	$\mathrm{x}= \pm 3, \pm 3 i$
7)	$63 i$	$15)$	$\mathrm{x}= \pm 2, \pm 1 / 2 i$
9)	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}-9 \mathrm{x}+36$	17)	$-1+14 i$
		19)	$-8 i$
		23)	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{5}-\mathrm{x}^{4}+13 \mathrm{x}^{3}-96$
$13 \mathrm{x}^{2}+36 \mathrm{x}-36$			

