EXERCISE A

Determine the equation of any vertical asymptotes, and the values of x for any holes in the graph of each rational function.

1) $\quad f(x)=\frac{x}{2 x(3 x-1)}$
2) $\quad f(x)=\frac{3}{x^{2}-4 x+4}$
3) $\quad f(x)=\frac{x-1}{x^{2}+4 x-5}$

Graph each rational function.
4) $f(x)=\frac{x}{x+1}$
5) $f(x)=\frac{4}{(x-1)^{2}}$
6) $\quad f(x)=\frac{x^{2}-25}{x-5}$
7) $\quad f(x)=\frac{x+2}{x^{2}-x-6}$

EXERCISE B

Determine the equation of any vertical asymptotes, and the values of x for any holes in the graph of each rational function.
8) $f(x)=\frac{2}{x^{2}-5 x+6}$
9) $g(x)=\frac{4}{x^{2}+2 x-8}$
10) $g(x)=\frac{x+3}{x^{2}+7 x+12}$
11) $\quad h(x)=\frac{x-5}{x^{2}-4 x-5}$

Graph each rational function.
12) $f(x)=\frac{3}{x}$
13) $f(x)=\frac{5 x}{x+1}$
14) $\quad f(x)=\frac{6}{(x-2)(x+3)}$
15) $f(x)=\frac{1}{(x+3)^{2}}$
16) $f(x)=\frac{x^{2}-1}{x-1}$
17) $f(x)=\frac{x+6}{x^{2}-36}$
18) LeBlonde plays basketball for Indian Valley High School. So far this season, she has made 6 out of 10 free throws. She is determined to improve her free throw shooting percentage. If she can make \boldsymbol{x} consecutive free throws, her free throw percentage can be determined using the function: $P(x)=\frac{6+x}{10+x}$
a) Graph the function.
b) What part of the graph is meaningful in the context of the problem?
c) Describe the meaning of the y-intercept.
d) What is the equation of the horizontal asymptote? Explain its meaning with respect to LeBlonde's shooting percentage.

ANSWERS:
$\begin{array}{llll}\text { 1) } & \text { asymptote: } x=1 / 3 & \text { 9) } & \text { asymptote: } x=-4,2 \\ \text { hole: } x=0\end{array} \quad \begin{array}{l}\text { hole: none } \\ \text { asymptote: } x=-5 \\ \text { hole: } x=1\end{array} \quad$ 11) $\left.\begin{array}{l}\text { asymptote: } x=-1 \\ \text { hole: } x=5\end{array}\right\}$ 12-17) See Mr. Paull

