EXERCISE A

Determine the equation of any vertical asymptotes, and the values of x for any holes in the graph of each rational function.

1)
$$f(x) = \frac{x}{2x(3x-1)}$$
 2) $f(x) = \frac{3}{x^2 - 4x + 4}$ 3) $f(x) = \frac{x-1}{x^2 + 4x - 5}$

Graph each rational function.

4)
$$f(x) = \frac{x}{x+1}$$
 5) $f(x) = \frac{4}{(x-1)^2}$

6)
$$f(x) = \frac{x^2 - 25}{x - 5}$$
 7) $f(x) = \frac{x + 2}{x^2 - x - 6}$

EXERCISE B

Determine the equation of any vertical asymptotes, and the values of x for any holes in the graph of each rational function.

8)
$$f(x) = \frac{2}{x^2 - 5x + 6}$$
 9) $g(x) = \frac{4}{x^2 + 2x - 8}$

10)
$$g(x) = \frac{x+3}{x^2+7x+12}$$
 11) $h(x) = \frac{x-5}{x^2-4x-5}$

Graph each rational function.

12)
$$f(x) = \frac{3}{x}$$
 13) $f(x) = \frac{5x}{x+1}$ 14) $f(x) = \frac{6}{(x-2)(x+3)}$

15)
$$f(x) = \frac{1}{(x+3)^2}$$
 16) $f(x) = \frac{x^2 - 1}{x - 1}$ 17) $f(x) = \frac{x + 6}{x^2 - 36}$

18) LeBlonde plays basketball for Indian Valley High School. So far this season, she has made 6 out of 10 free throws. She is determined to improve her free throw shooting percentage. If she can make x consecutive free throws, her free throw percentage can be determined using the function: $P(x) = \frac{6+x}{10+x}$

- a) Graph the function.
- b) What part of the graph is meaningful in the context of the problem?
- c) Describe the meaning of the y-intercept.
- d) What is the equation of the horizontal asymptote? Explain its meaning with respect to LeBlonde's shooting percentage.

ANSV 1)	WERS: asymptote: $x = 1/3$	9)	asymptote: $x = -4, 2$
3)	hole: $x = 0$ asymptote: $x = -5$ hole: $x = 1$	11)	hole: none asymptote: $x = -1$ hole: $x = 5$
4-7)	See Mr. Paull		12-17) See Mr. Paull