EXERCISE A

Use Cramer's Rule to solve each system of equations.

1) $5 x+2 y=8$
$2 x-2 y=7$
2) $2 x+7 y=4$
$x-2 y=-20$
3) $2 x-y=1$
$3 x+2 y=19$
4) $x+y+z=6$
$2 x+y-4 z=-15$
$5 x-3 y+z=-10$

5) The two sides of an angle are contained in lines whose equations are $4 x+y=-4$ and $2 x-3 y=-9$. Find the coordinates of the vertex of the angle.

EXERCISE B

Use Cramer's Rule to solve each system of equations.
6) $3 x+5 y=33$
$5 x+7 y=51$
7) $2 x-4 y=-1$
$3 y-4 x=-5$
8) $4 x+3 y=6$
$8 x-y=-9$

Use Cramer's Rule \& the graphing calculator to solve the following systems of equations.
9) $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=7$
10) $4 \mathrm{a}+2 \mathrm{~b}-3 \mathrm{c}=-32$
$6 x+2 y-2 z=4$
$4 x+6 y+4 z=14$

$$
-a-3 b+c=54
$$

$$
2 b+8 c=78
$$

EXERCISE C

11) Jackson and Drew each purchased some game and ride tickets at the fair. Using the chart:
a) Write a system of two equations.
b) Find the prices for each type of ticket.

PERSON	TICKET TYPE	\# OF TICKETS	TOTAL
Jackson	game ride	$\begin{gathered} 6 \\ 15 \end{gathered}$	\$93.00
Drew	game ride	$\begin{gathered} 7 \\ 12 \end{gathered}$	\$81.00

12) The two sides of an angle are contained in lines whose equations are $2.3 \mathrm{x}+1.2 \mathrm{y}=2.1$ and $4.1 \mathrm{x}-0.5 \mathrm{y}=14.3$. Find the coordinates of the vertex of the angle.

13) Write the system of equations whose solution is:

ANSWERS:

1) $(2,-1)$
2) $(-1.5,2)$
3) $(3,5)$
4) $(-4,-1.75)$
5) $(2,-1,3)$
11a) $6 \mathrm{~g}+15 \mathrm{r}=93$
$7 \mathrm{~g}+12 \mathrm{r}=81$
11b) $(\$ 3, \$ 5)$
6) $3 x+5 y=-6$
$4 x-2 y=30$
