\qquad

Inverse Property of Logs $\log _{5} 5^{3}=3$	Product Property $\log _{2} 5 \mathrm{x}=\log _{2} 5+\log _{2} \mathrm{x}$	Quotient Property $\log _{4} \frac{x^{2}}{6}=\log _{4} \mathrm{x}^{2}-\log _{4} 6$	Power Property $\log _{\mathrm{b}} \mathrm{x}^{3}=3 \log _{\mathrm{b}} \mathrm{x}$

Rewrite the following expressions using the above properties.

1) $\log _{9} 9^{2 x}=$ \qquad
2) $\log _{7} 12^{x}=$ \qquad
3) $\log _{6} 5 \mathrm{~g}-\log _{6} 10=$ \qquad
4) $\log _{2}(17 \cdot 13)=$ \qquad
5) $\log _{8} \frac{x}{3 x-1}=$ \qquad
6) $\quad 5 \log _{3} y=$ \qquad
7) $\log _{x} x^{(y+2)}=$ \qquad
8) $\log _{7} \mathrm{a}^{2}+\log _{7} 25=$ \qquad

Solve the following equations by applying the above properties.
9) $\quad \log _{10} 27=3 \log _{10} \mathrm{x}$
10) $\log _{5} y-\log _{5} 8=\log _{5} 9$
11) $\log _{9} 4+2 \log _{9} 5=\log _{9} \mathrm{w}$
12) $\log _{10} \mathrm{x}+\log _{10}(3 \mathrm{x}-5)=\log _{10} 2$
13) $\quad \log _{4}(\mathrm{n}+1)-\log _{4}(\mathrm{n}-2)=1$
14) $\log _{3} d+\log _{3} 3=3$
15) $\log _{2} x+2 \log _{2} 5=0$
16) $3 \log _{4} y=6$

Use the change of base formula to approximate the following values to 4-decimals. $\log _{a} n=\frac{\log _{10} n}{\log _{10} a}$
$\begin{array}{ll}\text { 17) } \log _{5} 12 & \text { 18) } \log _{8} 32\end{array}$
19) $\log _{11} 9$
20) $\log _{7} \sqrt{8}$
21) $\log _{6} \frac{3}{4}$

Solve each equation or inequality using common $\operatorname{logs}\left(\log _{10}\right)$. Round all answers to four decimals.
22) $9^{m} \geq 100$
23) $27=4^{2 x}$
24) $9^{z-2}>38$
25) $\quad 5^{x^{2}-3}=72$
26) $4^{2 x}=9^{x+1} \quad$ *hint: this one will require you to use a GCF at some point.

The key to success is to know when to use which property. \# in front of a log, use the power prop. + sign between two logs, use the product property. - sign between two logs, use the quotient property. Single \log with no variables, use the change of base formula. No logs, with crazy looking exponents, apply the common log to both sides.

