SECTION 10-4 COMMON LOGS

Solving exponential equations using common logarithms.

Examples: 1) $3^{x}=11$ If the idea is to get x by itself, how do I get rid of the 3 ?

$3^{x}=11$	
$\log 3^{x}=\log 11$	
$x \log 3=\log 11$	
$x=\frac{\log 11}{\log 3}$	simply pop it into your calc. and bam... $x \approx 2.1828$

Answer: take the common log of both sides. Since base ${ }_{10}$ is the only "common" log, it is unnecessary to include the ${ }_{10}$ when writing it.
2) $6^{x}=42$
3) $5^{3 y}<8^{y-1}$

$$
\begin{aligned}
& \log 6^{x}=\log 42 \\
& x \log 6=\log 42 \\
& x=\frac{\log 42}{\log 6} \\
& x \approx 2.086
\end{aligned}
$$

$$
\begin{array}{ll}
\log 5^{3 y}<\log 8^{y-1} & y(3 \log 5-\log 8)<-\log 8 \\
3 y \log 5<(y-1) \log 8 & y<\frac{-\log 8}{3 \log 5-\log 8} \\
3 y \log 5<y \log 8-\log 8 & y<-0.7564 \\
3 y \log 5-y \log 8<-\log 8 & \text { keep in mind it is an } \approx
\end{array}
$$

CHANGE OF BASE FORMULA

$\log _{a} n=\frac{\log _{b} n}{\log _{b} a}$ where a, b and n are positive numbers $(\mathrm{a}, \mathrm{b} \neq 1)$
Question? If you can use any base you want, what should we use?

Examples:
Approximate all answers to 4-decimal places.

4) $\log _{4} 25$

$\log _{4} 25$	$=\frac{\log 25}{\log 4}$
	≈ 2.3219

Answer: base ${ }_{10}$ (common log) because we can use the calculator!!
6) $\quad \log _{6} 9^{w-5}=2$

$$
\begin{aligned}
& (w-5) \log _{6} 9=2 \\
& (w-5) \frac{\log 9}{\log 6}=2 \\
& w-5=2 \cdot \frac{\log 6}{\log 9} \\
& w=2 \cdot \frac{\log 6}{\log 9}+5 \\
& w \approx 6.6309
\end{aligned}
$$

