Relation - set of ordered pairs	Domain - set of all first coordinates (x's) from the ordered pairs	Range - set of all second coordinates (y's) from the ordered pairs

Example 1: $\quad\{(5,3),(-9,1),(6,-7)\}$
Name the domain $\quad\{-9,5,6\}$
Name the range \qquad

Function - a special type of relation where... there are no numbers that repeat in the domain.

Determine if the following relations are functions or not, and why??

1) $\{(-3,2),(2,-3),(3,2),(2,3)\} \quad \mathrm{NO}$
2) $\{(-1,8),(-2,7),(-1,6)\}$
NO
3) $\left\{(0.5,1.3),(6,-3),\left(\frac{1}{2},-12\right)\right\} \quad \mathrm{NO}$
4) $\left\{\left(0.5, \frac{2}{3}\right),(1,-7),(-8,-7)\right\}$
YES

A mapping shows how the members of a relation are paired.

Function notation: $y=3 x-7$ means the same as $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-7$ or the function of x equals $3 x-7$

Plug in an " x " and compute a y (or f(x))

List the ordered pairs for each mapping, then determine whether it is a function.
5)

$(11,0),(9,6),(-2,3)$

$(1,-5),(1,-2),(2,-5),(2,15),(3,13)$
Function? YES

If $f(x)=3 x-7$ and $g(x)=2 x^{2}-x+5$, find the following:
7) $f(-8)$

$$
\begin{aligned}
f(-8) & =3(-8)-7 \\
& =-24-7 \\
& =-31
\end{aligned}
$$

8) $g(4)$

$$
\begin{aligned}
\mathrm{g}(4) & =2(4)^{2}-4+5 \\
& =2(16)-4+5 \\
& =32-4+5 \\
& =33
\end{aligned}
$$

9) $g(1 / 2) \quad g(1 / 2)=2(1 / 2)^{2}-1 / 2+5$

$$
\begin{aligned}
& =2(1 / 4)-1 / 2+5 \\
& =1 / 2-1 / 2+5 \\
& =5
\end{aligned}
$$

11) $\mathrm{f}(\mathrm{n}+5) \mathrm{f}(\mathrm{n}+5)=3(\mathrm{n}+5)-7$

$$
\begin{aligned}
& =3 n+15-7 \\
& =3 n+8
\end{aligned}
$$

12) $g\left(4 a^{3}\right)$
$g\left(4 a^{3}\right)=2\left(4 a^{3}\right)^{2}-4 a^{3}+5$
$=2\left(16 a^{6}\right)-4 a^{3}+5$
$=32 a^{6}-4 a^{3}+5$

Determine if each relation graphed is a function or not.

A set of coordinates, or a mapping (which represents a set of coordinates). These are just single points when graphed.

Example: $\{(3,7),(-9,10),(-1,-1)\}$ is a discrete function

An equation. When graphed, equations make a line, which goes on infinitely (or continuously).

Example: $f(x)=3 x^{2}+2$ is a continuous function

