Algebra II

1-1 Relations and Functions

Relation – set of ordered pairs	Domain – set of all first coordinates (x's) from the ordered pairs		Range – set of all second coordinates (y's) from the ordered pairs	
Example 1: {(5,3), (-	9,1), (6,-7)}	Name the don	nain {-9, 5, 6}	
		Name the rang	ge <u>{-7, 1, 3}</u>	
Function – a special type o	f relation where	here are no numbe	ers that repeat in the domain.	
Determine if the followi	ng relations are fur	nctions or not, ar	nd why??	
) {(-3,2), (2,-3), (3	3,2), (2,3)} <u>NO</u>	_ 2)	{(-1,8), (-2,7), (-1,6)}	NO
(0.5,1.3), (6,-3)	$(\frac{1}{2}, -12)\}$ <u>NO</u>	_ 4)	$\{(0.5, \frac{2}{3}), (1, -7), (-8, -7)\}$	YES
A mapping – L shows how fu the members of a relation are paired. 5	ist the ordered pair inction.	rs for each mappinge	6) domain range -5	it is a
		3	$\begin{array}{c} 2 \\ 3 \end{array}$	

(1, -5), (1, -2), (2, -5), (2, 15), (3, 13)

Function? <u>NO</u>

Function? <u>YES</u>

(11, 0), (9, 6), (-2, 3)

If f(x) = 3x - 7 and $g(x) = 2x^2 - x + 5$, find the following:

7) $f(-8)$ $f(-8) = 3(-8) - 7$ = -24 - 7 = -31	8) $g(4)$ $g(4) = 2(4)^2 - 4 + 5$ = 2(16) - 4 + 5 = 32 - 4 + 5 = 33
9) $g(1/2)$ $g(1/2) = 2(1/2)^2 - 1/2 + 5$ = $2(1/4) - 1/2 + 5$ = $1/2 - 1/2 + 5$ = 5	10) $f(2y) = f(2y) = 3(2y) - 7$ = $6y - 7$
11) $f(n + 5) = 3(n + 5) - 7$ = $3n + 15 - 7$ = $3n + 8$	12) $g(4a^3)$ $g(4a^3) = 2(4a^3)^2 - 4a^3 + 5$ = $2(16a^6) - 4a^3 + 5$ = $32a^6 - 4a^3 + 5$

Function notation: y = 3x - 7 means the same as f(x) = 3x - 7 or the function of x equals 3x - 7Plug in an "x" and compute a y (or f(x)) Determine if each relation graphed is a function or not.

Example: $f(x) = 3x^2 + 2$ is a continuous function