A linear equation has no operations other than addition, subtraction and multiplication of a variable by a constant. Or, for us non-math geniuses, there are no exponents other than ONE.

Examples of linear equations or functions. Write yes or no in the blank to indicate whether each is linear.

1) \qquad $y=2 x-11$
2) \qquad $f(x)=3 x^{2}+2 x-1$
3) \qquad 4) \qquad $x^{3}-y^{2}=10$
4) $\underset{Y}{ } f(x)=\frac{x}{4}+\frac{5 y}{6}=\frac{1}{2}$
5) $\mathrm{N} \frac{4}{y}=\frac{6}{5 x}+\frac{1}{2}$

Put the following equations in STANDARD FORM.
7) $1-3 x=7 y$

$$
\begin{aligned}
& 1=7 y+3 x \\
& x \text {-term cannot be negative } \\
& 3 x+7 y=1
\end{aligned}
$$

8) $10+4 x=3 y$

$$
\begin{aligned}
& 4 x=3 y-10 \\
& 4 x-3 y=-10
\end{aligned}
$$

9) $0.4 x+1.5=0.32 y$

$$
\begin{aligned}
& 40 x+150=32 y \\
& 40 x=32 y-150 \\
& 40 x-32 y=-150
\end{aligned}
$$

10) $\frac{x}{5}+\frac{3 y}{2}=\frac{1}{15}$

Find common denom.s

$$
\frac{6 x}{30}+\frac{45 y}{30}=\frac{2}{30}
$$

Erase (ignore) denom.s

$$
6 x+45 y=2
$$

The standard form of an equation is: $A x+B y=C$ where A, B and C are integers whose greatest common factor is 1 . $A \geq 0$, and A and B are not both zero.

NO FRACTIONS
NO DECIMALS
NO NEGATIVE " x "

Determine the $\mathrm{x} \& \mathrm{y}$-intercepts for each equation.

One way to find an intercept is to plug zero into the opposite variable and solve the equation for the remaining variable.

11) $3 x+7 y=-21$

$3 x+7(0)=-21$	$\&$
$3 x+0=-21$	$0+7 y=-21$
$3 x=-21$	$7 y=-21$
x-int $=-7$	$y-$-int $=-3$

$0=4-2 x$	$\&-y=4-2(0)$
$-4=-2 x$	$-y=4$
$2=x$	$y=-4$
x-int $=2$	y-int $=-4$

13) $2 y=5 x-18$

$2(0)=5 x-18$	$\&$
$0 y=5(0)-18$	
$0=5 x-18$	$2 y=0-18$
$18=5 x$	$2 y=-18$
x-int $=18 / 5$	y-int $=-9$

14) $\frac{3}{5} x=6$

$3 x=30$	There is no " y " in the problem, so $y-10$ x-int $=10$

