There are three ways to determine slope.

I. $y=m x+b$, where m stands for slope.

Examples: Determine the slope for each equation.

1) $y=-\frac{3}{5} x+9$

$$
m=-\frac{3}{5}
$$

2) $2 x-3 y=18$

$$
\begin{aligned}
& -3 y=-2 x+18 \\
& y=\frac{2}{3} x-6 \quad m=\frac{2}{3}
\end{aligned}
$$

3) $2 y+1=9$

$$
2 y=8
$$

$$
y=4
$$

horizontal line = zero slope
II. From the graph. Count the rise over the run and you've got a fraction that represents the slope.

Examples: Determine the slope for each line shown.
4)

5)

III. Given two (or more) sets of coordinates. Do you remember the formula?

$$
\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Examples:
5) passes thru
$(-1,6)$ and $(5,8)$
6) passes thru
$(-9,2)$ and $(-5,-22)$
7) passes thru
$(-0.6,11)$ and $(-0.6,6)$

$$
\begin{aligned}
& \frac{8-6}{5-(-1)} \\
& =\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-22-2}{-5-(-9)} \\
& =\frac{-24}{4}=-6
\end{aligned}
$$

$$
\frac{6-11}{-0.6-(-0.6)}=\frac{-5}{0}
$$

m = no slope or undefined
Parallel and Perpendicular slopes.
Examples: $\quad\left[\begin{array}{l}\frac{1}{3} y=-x-2 \\ y=-3 x-6\end{array}\right.$

Given a linear equation, find the slope of the line, then determine the slope parallel and perpendicular.
8) $y=\frac{4}{5} x-1$
|| $=$ \qquad
$\perp=-\quad-5 / 4$
9) $x+\frac{1}{3} y=-2$
\qquad
$\perp=1 / 3$
10) $x=-5$
| $\mid=\quad$ no slope
$\perp=$ \qquad

Graphing with Parallel and Perpendicular slopes.

Examples:

Graph each line using the information given.
11)

14) perpendicular to the graph of $3 x+2 y=-8$ and intersects that graph at its y-intercept

