Algebra II Section 3-2

OPERATIONS WITH POLYNOMIALS

Time to add another line to the chart. Think about what the problem 6x + 4x equals before you try to fill in the last two columns.

Distribute a (-1) $8x^3 - 7x - 6x^3 + 5x$

 $2x^{3} - 2x$

Operation	Coefficients	Exponent
Multiply	mult	add
Raise to a power	sq., cube, etc	mult
Divide	div. or reduce	subt
Add or subtract	add or subtract	do nothing

(-8m - 3mn) + (m + 5n - 7mn)

 $+3r^{2}$)

-7m – 10mn + 5n

Examples:

3)

es:	1)	$(2x^2 - 4x + 9) + (x^2)$	+ 6x – 13)
		$3x^2 + 2x - 4$	
(8x ³ –	- 7x) – (6	$5x^3 - 5x$	4)

4)
$$(5r^2 - 10xy + 12) - (17 - 2xy + 3r^2)$$

 $5r^2 - 10xy + 12 - 17 + 2xy - 3r^2)$
 $2r^2 - 8xy - 5$

2)

POLYNOMIALS AND THEIR DEGREE

Here are some expressions, some of which are considered polynomials, and some are not. Take an educated guess!

THE DISTRIBUTIVE PROPERTY (USING EXPONENTS)

Examples:

1)
$$3n^{3}p(5np^{4} + 11n^{2}p^{2})$$
 2) $9x^{3}(2x - 3x^{-3} - x^{-2}y)$ 3) $a^{-1}b^{2}(ab^{-1} + 8a^{5}b^{-2} + a^{-3})$
15 $n^{4}p^{5} + 33n^{5}p^{3}$ 18 $x^{4} - 27 - 9xy$ 3) $b + 8a^{4} + a^{-4}b^{2}$
 $b + 8a^{4} + \frac{b^{2}}{a^{4}}$
Move the a^{4} to the bottom of only the 3^{rd} term (do not make one big fraction)
Homework: pg322-323 15-28, 42-47

THE FOIL METHOD (F irst, O utside, I nside, L ast)

Examples:

4)
$$(x + 9)(x - 7)$$

F: $x \cdot x = x^{2}$
O: $x \cdot -7 = -7x$
I: $9 \cdot x = 9x$
L: $9 \cdot -7 = -63$
combine: $x^{2} + 2x - 63$
7) $(x^{2} - 8)(x^{2} + 6x)$
 $x^{4} + 6x^{3} - 8x^{2} - 48x$
Sometimes, after doing
5) $(5y - 2)(4y - 11)$
F: $5y \cdot 4y = 20y^{2}$
O: $5y \cdot -11 = -55y$
I: $-2 \cdot 4y = -8y$
L: $-2 \cdot -11 = 22$
combine: $20y^{2} - 63y + 22$
8) $(2n + 9)^{2}$
 $(2n + 9)^{2} = (2n + 9)(2n + 9)$
 $= 4n^{2} + 18n + 18n + 81$

FOIL, nothing will combine

Try to remember way back to elementary school! Do you remember filling in any multiplication tables? Maybe that will help you decide how to do these problems.

 $=4n^{2}+36n+81$

Examples:

1)
$$(3x-2)(x^2+5x-8)$$

THE BOX METHOD

$$\begin{array}{c|cccc} x^2 & 5x & -8 \\ 3x & 3x^3 & 15x^2 & -24x \\ -2 & -2x^2 & -10x & 16 \end{array}$$

combine what's in the box = $3x^3 + 13x^2 - 34x + 16$

2)
$$(y^2 + 4y - 1)(2y^2 - 6y + 7)$$

	2 y ²	-6y	7
y ²	2y ⁴	-6y ³	7 y ²
4y	8y ³	-24y ²	28y
-1	-2y ²	6у	-7

$$= 2y^4 + 2y^3 - 19y^2 + 34y - 7$$