Algebra II

In my humble opinion, there are
8 -different varieties of factoring to be concerned with.

TRINOMIAL FACTORING

$$
3 x^{2}+8 x-21 x-56
$$

Warm up: complete the FOIL problem: $\quad(x-7)(3 x+8)=\quad=3 x^{2}-13 x-56$

Now go backwards:

$$
(x+9)(x+8)=x^{2}+17 x+72
$$

DIFFERENCE OF 2-SQUARES

Warm up: FOIL, or more appropriately FL, this problem: $\quad(2 n+9)(2 n-9)=\ldots 4 n^{2}-81$

Now go backwards:

$$
(x+7)(x-7)=x^{2}-49
$$

Examples:

1) $m^{2}-121$
2) $25 j^{2}-9$
3) $c^{6}-\frac{25}{64}$
$(m+11)(m-11)$
$(5 j+3)(5 j-3)$

$$
\left(c^{3}+\frac{5}{8}\right)\left(c^{3}-\frac{5}{8}\right)
$$

PERFECT SQUARES

Treat these just like the previous examples, and see what makes them unique.

Examples:

2) $m^{2}-4 m n+4 n^{2}$
3) $9 \mathrm{x}^{2}-24 \mathrm{x}+16$
$(m+2 n)(m+2 n)$
$(3 x+4)(3 x+4)$
$=(m+2 n)^{2}$

$$
=(3 x+4)^{2}
$$

For perfect squares, simplest form is to write () ${ }^{2}$

GREATEST COMMON FACTOR (GCF)

is the most forgotten, \#1 mistake of all the types of factoring, so PAY ATTENTION!
Warm up: use distributive prop. to simplify: $\quad 3 x^{3} y\left(5 x^{2}-7 y\right)=15 x^{5} y-21 x^{3} y^{2}$

Now go backwards:

Examples:

1) $9 x-12 x y+3 x^{2} y$ $3 x(3-4 y+x y)$

$$
5 b c^{2}(3+b c)=15 b c^{2}+5 b^{2} c^{3}
$$

2) $8 m+6 n+10$
$2(4 m+3 n+5)$
3) $-14 r^{3}-21 r^{2}-7 r$ $-7 r\left(2 r^{2}+3 r+1\right)$

TRINOMIAL ($a>1$)

Comparison: $\quad x^{2}+13 x+40$
$=(x+8)(x+5)$
why $8 \& 5$?
because $8 \& 5$ add up to 13

Examples:

1) $3 x^{2}+23 x+40$
possible ways to get 40: $1 \& 40,2 \& 20,4 \& 10,5 \& 8$ Use trial \& error to find the one that checks to 23

add up to 23?
because of the 3 in $3 x^{2}$, if you were to FOIL the answer back out, the 3 will change the outcome
2) $8 m^{2}+47 m-6$

$$
=(8 m-1)(m+6)
$$

3) $12 y^{2}+19 y-18$ $=(3 y-2)(4 y+9)$

Check the O \& I from FOIL: $(3 y)(9)=27 y$ $(-2)(4 y)=-8 y$, combine to get $19 y$. Checks!

Just for kicks, attempt the following.

$$
x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)
$$

Notice the size of the parenthesis.

Example:	$y^{3}+125$	step(1), treat it like FOIL	$1 y$ (y	$\begin{gathered} \text {)(y } y^{2} \\ \text { 5) }\left(y^{2}\right. \end{gathered}$)
		step(2), the middle; mult. what's in the first ()	(y	5) $\left(y^{2}\right.$	$5 y$	25)
		step(3), clean with SOAP	(y	5) $\left(y^{2}\right.$	$5 y$	25)

Examples:

1) $g^{3}+64$
2) $27 x^{3}-1$ $(g+4)\left(g^{2}-4 g+16\right)$

$$
(3 x-1)\left(9 x^{2}+3 x+1\right)
$$

3) $8 a^{3}-\frac{1}{27} \mathrm{~b}^{3}$

$$
\left(2 a-\frac{1}{3} b\right)\left(4 a^{2}+\frac{3}{3} a b+\frac{1}{9} b^{2}\right)
$$

Warm up: Factor (1-step only): $\quad 4 x^{3}-2 x+12=$ prime, can't do it!
GCF's are almost always the first step, so if you forget to always attempt a GCF first...
Examples:

1) $x^{3}+5 x^{2}-14 x$
2) $8 h^{2}-18$
3) $y^{2}+w^{3} y^{2}$

GCF: $x\left(x^{2}+5 x-14\right)$
factor again $\mathrm{w} /$ trinomial factoring
$x^{2}+5 x-14=(x+7)(x-2)$

GCF: $2\left(h^{2}-9\right)$
factor again w/difference of 2-squares $=2(h+3)(h-3)$

GCF: $y^{2}\left(1+w^{3}\right)$
factor again $w /$ perfect cube $=y^{2}(1+w)\left(1-w+w^{2}\right)$

Answer: $x(x+7)(x-2)$
4) $a x^{2}-8 a x+16 a$
5) $15 \mathrm{p}^{2}-35 \mathrm{p}-30$
6) $n^{6}-1$

GCF: $a\left(x^{2}-8 x+16\right)$
now use perfect square $=a(x-4)^{2}$

GCF: $5\left(3 p^{2}-7 p-6\right)$ now use trinomial ($\mathrm{a}>1$) $=5(3 p+2)(p-3)$

No GCF! use diff of 2-squares $\left(n^{3}+1\right)\left(n^{3}-1\right)$
now use perfect cube on both
$(n+1)\left(n^{2}-n+1\right)(n-1)\left(n^{2}+n+1\right)$

To $2^{\text {nd }}$ step or not to $2^{\text {nd }}$ step, that is the question.
Examples:

1) $3 j^{7}-9 j^{2}+15 j^{3}$
2) $8 m n^{2}+8 m n+2 m$
3) $\mathrm{kx}-4 \mathrm{k}$

GCF $=3 j^{2}\left(3 j^{5}-3+5 j\right)$	GCF $=2 m\left(4 n^{2}+4 n+1\right)$	GCF $=k(x-4)$
When did we ever split	There is an n-"squared" left	How can we possibly split the x
up a j^{5} ? Never!	in the ($) \cdot 2^{\text {nd }}$ step!!!	up if there is only one? Can't!
DONE	$2 m(2 n+1)(2 n+1)$	DONE
	$2 m(2 n+1)^{2}$	

