Why would it be impossible to divide by a negative square root? Answer: it's imaginary! Therefore, we must eliminate any i's (or complex numbers) from the denominator in any \& all fractions.

Examples: 1) How can I (without erasing it!) get rid of the "i" from the bottom of the fraction: $\frac{7}{3 i}$
*remember you can multiply the bottom by anything you want as long as you do the same to the top
2)

$\frac{1}{2 i}$| $\bullet i=i$ |
| :--- |
| $\bullet i=2 i^{2}$ |
| $=\frac{i}{2(-1)}=-\frac{i}{2}$ |

3)

$$
\begin{gathered}
\frac{5}{-i} \\
\frac{\bullet i}{\bullet i}=\frac{5 i}{-i^{2}} \\
=\frac{5 i}{-1(-1)}=5 i
\end{gathered}
$$

Complex numbers also contain an " i ", so we cannot have them in the denominator either. What would we need to do different to get rid of this "i"?

Example:

$$
\begin{aligned}
& \bullet \frac{1-i}{1-i}=\frac{2 i-2 i^{2}}{1-i^{2}} \\
& \frac{2 i+2}{1+1}=\frac{2 i+2}{2}=i+1
\end{aligned}
$$ the O \& I in FOIL always cancels, you may skip them

