Algebra II

Examples:

1) $(7-8 i)+(-2+11 i)$

Treat " i " like any other variable.
$=5+3 \mathrm{i}$
2) $(6-\mathrm{i})-(8-10 \mathrm{i})$

Distribute the neg. sign
$6-\mathrm{i}-8+10 \mathrm{i}$
$=-2+9 i$

Operations with Complex Numbers
A complex number is a combination of one real number followed by one imaginary number. For example:
$14+3 \mathrm{i}$ or $1-9 \mathrm{i}$ are considered complex numbers.
3) $(2+3 i \sqrt{2})-(6-i \sqrt{2})$

When adding square roots, do not change to square root part.
$2+3 i \sqrt{2}-6+i \sqrt{2}$
$=-4+4 i \sqrt{2}$

Examples: 4) $8(7-4 \mathrm{i})$

Distribute, literally.
$=56-32 \mathrm{i}$
5) $\quad-3(2 \mathrm{i}-5)-(1+4 \mathrm{i})$

$$
\begin{aligned}
& -6 \mathrm{i}+15-1-4 \mathrm{i} \\
& =14-10 \mathrm{i}
\end{aligned}
$$

Examples:
6)
$(5+2 i)(4+7 i)$

7) $(1-i)(11+i)$

$20+35 i+8 i+14 i^{2 \circ}$
$20+43 \mathrm{i}+14(-1)$
$20+43 \mathrm{i}-14$
$6+43 \mathrm{i}$

souving collations

$$
\begin{aligned}
& 11+\mathrm{i}-11 \mathrm{i}-\mathrm{i}^{2} \\
& 11-10 \mathrm{i}-(-1) \\
& 11-10 \mathrm{i}+1 \\
& 12-10 \mathrm{i}
\end{aligned}
$$

Examples:
9) $x^{2}+63=0$

$$
\begin{aligned}
& \mathrm{x}^{2}=-63 \\
& \mathrm{x}= \pm \sqrt{-63} \\
& \mathrm{x}= \pm i \sqrt{9} \sqrt{7} \\
& \mathrm{x}= \pm 3 \mathrm{i} \sqrt{7}
\end{aligned}
$$

10) | | $2 \mathrm{n}^{2}+18=0$ |
| :--- | :--- |
| $\begin{array}{ll}2 \mathrm{n}^{2}=-18 \\ \mathrm{n}^{2}=-9 \\ \mathrm{n}= \pm \sqrt{-9} \\ \mathrm{n}= \pm 3 \mathrm{i}\end{array}$ | |
11) $(3-8 i)^{2}$

$$
\begin{aligned}
& (3-8 i)(3-8 i) \\
& 9-24 i-24 i+64 i^{2} \\
& 9-48 i-64 \\
& -55-48 i
\end{aligned}
$$

short cut: The i ${ }^{2}$ just changes the sign of the \# that preceeds it.
11)

$$
\begin{aligned}
& -3 \mathrm{n}^{2}-75=0 \\
& -3 \mathrm{n}^{2}=75 \\
& \mathrm{n}^{2}=-25 \\
& \mathrm{n}= \pm \sqrt{-25} \\
& \mathrm{n}= \pm 5 \mathrm{i}
\end{aligned}
$$

