Note page for Simplifying Radicals

Simplifying examples: Treat them like factor trees (literally) 1) without negative 2) with negative $\sqrt{48x^2}$ $\sqrt{-50}$ $\sqrt{6}\sqrt{8}\sqrt{x}\sqrt{x}$ $\sqrt{-1}\sqrt{50}$ $\sqrt{2}\sqrt{3}\sqrt{2}\sqrt{4}\sqrt{x}\sqrt{x}$ $\sqrt{-1}\sqrt{2}\sqrt{25}$ $\sqrt{3}\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{x}\sqrt{x}$ $\sqrt{-1}\sqrt{2}\sqrt{5}\sqrt{5}$ Circle any pairs you see and use one of those numbers as your outside total. The square root of -1 = i $=5i\sqrt{2}$ $2 \cdot 2x \sqrt{3}$ Answer: $=4x\sqrt{3}$

Multiply and divide examples: Treat mult. problems like the above.

1)
$$(7\sqrt{10})(3\sqrt{-14})$$

2) $\frac{\sqrt{120}}{\sqrt{30}}$
3) $\sqrt{\frac{3}{100}}$
7 $\sqrt{2}\sqrt{5} \cdot 3\sqrt{-1}\sqrt{2}\sqrt{7}$
7 $\cdot 3 \cdot 2 \cdot i\sqrt{5}\sqrt{7}$
 $= 42i\sqrt{35}$
2) $\frac{\sqrt{120}}{\sqrt{30}}$
 $\sqrt{120}$
 $\sqrt{\frac{120}{30}}$
 $\sqrt{4}$
 $= 2$
3) $\sqrt{\frac{3}{100}}$
 $\frac{\sqrt{3}}{\sqrt{100}} = 10$
 $= \frac{\sqrt{3}}{10}$ done!

i-chart	
$\sqrt{-1} = i$	i ² = -1
i ³ = -i	<i>i</i> ⁴ = 1

 $(3i)^{3}(2i^{4})$

54∙-i = -54i

 $(27i^{3})(2i^{4})$

(27•-i)(2•1)

Examples using imaginary numbers (i)

Treat the "i" like any other variable, then consult the i-chart to simplify

1)
$$-5i^2 \cdot 4i$$
 2)
-20i^3
-20 \cdot -i
= 20i

3)

i³⁹

 $i^{36} \cdot i^{3}$ (find a multiple of 4) $(i^{4})^{9} \cdot i^{3}$ $(1)^{9} \cdot i^{3}$ $1 \cdot -i$ = -i