Note page for Simplifying Radicals

Simplifying examples: Treat them like factor trees (literally)

1) without negative
2) with negative

$$
\begin{gathered}
\sqrt{48 x^{2}} \\
\sqrt{6} \sqrt{8} \sqrt{x} \sqrt{x} \\
\sqrt{2} \sqrt{3} \sqrt{2} \sqrt{4} \sqrt{x} \sqrt{x} \\
(2) \sqrt{3} \sqrt{2} \sqrt{2} \sqrt{2}-x \sqrt{x}
\end{gathered}
$$

$$
\begin{gathered}
\sqrt{-50} \\
\sqrt{-1} \sqrt{50} \\
\sqrt{-1} \sqrt{2} \sqrt{25} \\
\sqrt{-1} \sqrt{2} \sqrt{5} \sqrt{5}
\end{gathered}
$$

Circle any pairs you see and use one of those numbers as your outside total. The square root of $-1=i$
Answer:

$$
\begin{aligned}
& 2 \cdot 2 \times \sqrt{3} \\
& =4 x \sqrt{3}
\end{aligned}
$$

$$
=5 i \sqrt{2}
$$

Multiply and divide examples: Treat mult. problems like the above.

1) $(7 \sqrt{10})(3 \sqrt{-14})$
2) $\frac{\sqrt{120}}{\sqrt{30}}$
combine as one
$\sqrt{\frac{120}{30}}$
$\sqrt{4}$

$$
=2
$$

3) $\sqrt{\frac{3}{100}}$
split into two
$\frac{\sqrt{3}}{\sqrt{100}}$
since $\sqrt{100}=10$
$=\frac{\sqrt{3}}{10}$ done !

Examples using imaginary numbers (i)	i-chart	
	$\sqrt{-1}=i$	$i^{2}=-1$
Treat the "i" like any other variable, then consult the i-chart to simplify	$i^{3}=-i$	$i^{4}=1$

1) $\quad-5 i^{2} \cdot 4 i$
$-20 i^{3}$
-20•-i
$=20 \mathrm{i}$
2) $\quad(3 i)^{3}\left(2 i^{4}\right)$
$\left(27 i^{3}\right)\left(2 i^{4}\right)$
(27•-i)(2•1)
54--i
$=-54 i$
3) $\quad i^{39}$
$i^{36} \cdot i^{3}$ (find a multiple of 4)
$\left(i^{4}\right)^{9} \cdot i^{3}$
(1) $)^{9} \cdot i^{3}$
1-i
= -i
