Algebra II

## Section 5-3

## COMPLETING THE SQUARE

The SQUARE ROOT Property
Factor perfect square problems, then take the square root!

1) $\mathrm{x}^{2}-6 \mathrm{x}+9=32$


## COMPLETING THE SQUARE

If the equation will not factor into a perfect square, you can "force" it to by inserting the correct number as the third term.
1)

2) $4 n^{2}+20 \mathrm{n}+25=2$

$$
\begin{aligned}
& (2 n+5)(2 n+5)=2 \\
& (2 n+5)^{2}=2 \\
& \sqrt{(2 n+5)^{2}}=\sqrt{2} \\
& 2 n+5= \pm \sqrt{2} \\
& 2 n= \pm \sqrt{2}-5 \\
& n=\frac{ \pm \sqrt{2}-5}{2}
\end{aligned}
$$

Example: $\quad y^{2}+8 y+11=20$
eleven won't factor, so what number would?
$y^{2}+8 y+\underline{16}=9+\underline{16}$
$(y+4)(y+4)=25$
$(y+4)^{2}=25$
square root both sides

$$
\begin{array}{ll}
\sqrt{(y+4)^{2}}=\sqrt{25} & \\
y+4= \pm 5 \\
y=5-4 & \\
y=1 & \text { and }
\end{array} \quad y=-5-4 ~ \begin{aligned}
& \text { and } \\
& y=-9
\end{aligned}
$$

2) $3 x^{2}+12 x+36=0$

Divide everything by 3
$x^{2}+4 x+12=0$
$x^{2}+4 x+4=-12+4$
short cut to ()$^{2}$ if you wish
$(x+2)^{2}=-8$
$\sqrt{(x+2)^{2}}=\sqrt{-8}$
$x+2= \pm 2 i \sqrt{2}$
$x= \pm 2 i \sqrt{2}-2$
3) $-2 x^{2}+5 x-3=0$

Divide everything by -2
$x^{2}-5 / 2 x+3 / 2=0$
$x^{2}-5 / 2 x+25 / 16=-3 / 2+25 / 16$
$(x-5 / 4)^{2}=1 / 16$
$\sqrt{(x-5 / 4)^{2}}=\sqrt{1 / 16}$
$x-\frac{5}{4}= \pm \frac{1}{4}$
$x= \pm \frac{1}{4}+\frac{5}{4} \quad$ so $x=1$ and $x=\frac{3}{2}$

