Section 5-3

COMPLETING THE SQUARE

The SQUARE ROOT Property

Factor perfect square problems, then take the *square root*!

Example:

 $x^{2} - 14x + 49 = 144$ when in doubt, factor it out! (x - 7)(x - 7) = 144 $(x - 7)^{2} = 144$ square root both sides $\sqrt{(x - 7)^{2}} = \sqrt{144}$ $x - 7 = \pm 12$ x = 12 + 7 and x = -12 + 7x = 19 and x = -5

(2n + 5)(2n + 5) = 2

 $\sqrt{(2n+5)^2} = \sqrt{2}$

 $(2n + 5)^2 = 2$

 $2n + 5 = \pm \sqrt{2}$ $2n = \pm \sqrt{2} - 5$

 $n = \frac{\pm\sqrt{2}-5}{2}$

1)
$$x^{2} - 6x + 9 = 32$$

 $(x - 3)(x - 3) = 32$
 $(x - 3)^{2} = 32$
 $\sqrt{16} \cdot \sqrt{2}$
 $\sqrt{x - 3} = \pm 4\sqrt{2}$
 $x - 3 = \pm 4\sqrt{2}$
 $x = \pm 4\sqrt{2} + 3$

Example:

2)

If the equation will not factor into a perfect square, you can "force" it to by inserting the correct number as the third term.

COMPLETING THE SQUARE

1)
$$x^{2} - 10x + 45 = 0$$

 $x^{2} - 10x + 45 = 0$
 $x^{2} - 10x + 45 = 0$
 $x^{2} - 10x + 45 = 0$
 $x^{2} - 10x + 25 = -45 + 25$
 $(x - 5)(x - 5) = -20$
 $(x - 5)^{2} = -20$
 $\sqrt{(x - 5)^{2}} = \sqrt{-20}$
 $x - 5 = \pm 2i\sqrt{5}$
 $x = \pm 2i\sqrt{5} + 5$
 $x = \pm 2i\sqrt{5} + 5$
 $x = \pm 2i\sqrt{2} - 2$
 $\sqrt{(x - 5)^{2}} = \sqrt{-20}$
 $x - 5 = \pm 2i\sqrt{5} + 5$
 $x = \pm 2i\sqrt{2} - 2$
 $\sqrt{(x - 5)^{2}} = \sqrt{-20}$
 $x - 5 = \pm 2i\sqrt{5} + 5$
 $x = \pm 2i\sqrt{2} - 2$
 $\sqrt{(x - 5)^{2}} = \sqrt{-20}$

 $y^2 + 8y + 11 = 20$

 $4n^2 + 20n + 25 = 2$

eleven won't factor, so what number would? $y^2 + 8y + 16 = 9 + 16$ (y + 4)(y + 4) = 25 $(y + 4)^2 = 25$ square root both sides $\sqrt{(y + 4)^2} = \sqrt{25}$ $y + 4 = \pm 5$ y = 5 - 4 and y = -5 - 4 y = 1 and y = -9+ 12x + 36 = 0 3) $-2x^2 + 5x - 3 = 0$

> Divide everything by -2 $x^{2} - 5/2x + 3/2 = 0$ $x^{2} - 5/2x + 25/16 = -3/2 + 25/16$ $(x - 5/4)^{2} = 1/16$ $\sqrt{(x - 5/4)^{2}} = \sqrt{1/16}$ $x - \frac{5}{4} = \pm \frac{1}{4}$ $x = \pm \frac{1}{4} + \frac{5}{4}$ so x = 1 and $x = \frac{3}{2}$