VERTEX FORM

Section 5-5

> QUADRATIC FUNCTION VERTEX FORM: $y=a(x-h)^{2}+k$ where the verte $=(h, k)$, the axis of symmetry is $x=h$ and the direction of opening is up if " a " is positive and down if it is negative.

Examples (in, or almost in vertex form)
1)
$y=(x-2)^{2}-5$
\qquad
2) $y=-2(x+1)^{2}+3$
$V: \quad(-1,3)$

AOS: \qquad

Opens: \qquad down

Graph it!
Graph it!
x / y-charts for the graphs are shown @the end of the note page

Examples (not in vertex form):

1) $\quad v=x^{2}-8 x+11$	2) $y=-5 x^{2}-10 x-9$	3) $y=\frac{1}{2} \mathrm{x}^{2}-7 x+\frac{32}{}$
$1 / 2$ of 8 squared $=16$, +16 for factoring, -16 @ the end $\begin{aligned} & y=x^{2}-8 x+16+11-16 \\ & y=(x-4)(x-4)+11-16 \\ & y=(x-4)^{2}-5 \\ & V=(4,-5) \quad \text { AOS: } x=4 \quad \text { up } \end{aligned}$	$\begin{array}{ll} \frac{y}{-5}=x^{2}+2 x+\frac{9}{5} & \\ \frac{y}{-5}=x^{2}+2 x+1 & +\frac{9}{5}-1 \\ \frac{y}{-5}=(x+1)^{2}+\frac{4}{5} & \begin{array}{l} \text { mult by }-5 \text { to } \\ \text { get } y \text { by itself } \end{array} \\ y=-5(x+1)^{2}-4 & \\ V=(-1,-4) \quad \text { AOS: } x=-1 \quad \text { down } \end{array}$	$\begin{aligned} & 2 y=x^{2}-14 x+3 \\ & 2 y=x^{2}-14 x+49 \quad+3-49 \\ & 2 y=(x-7)^{2}-46 \end{aligned}$ divide by 2 to get y by itself $\begin{aligned} & y=\frac{1}{2}(x-7)^{2}-23 \\ & V=(7,-23) \quad \text { AOS: } x=7 \quad \text { up } \end{aligned}$

Write the quadratic equation (in vertex form) for each graph pictured.
1)

$(-5,2)$
$y=a(x+5)^{2}+2 \quad$ (plugged in vertex no.s)
insert -2 \& 8 for $x \& y$
$8=a(-2+5)^{2}+2$
then solve for a
$8=a(3)^{2}+2$
$8=9 a+2$
$6=9 a \quad$ answer
$a=2 / 3$

$$
y=2 / 3(x+5)^{2}+2
$$

2)

3) \quad Vertex $=(10,6)$

Coordinate $=(12,18)$

$$
\begin{array}{ll}
y=a(x-10)^{2}+6 & \\
18=a(12-10)^{2}+6 & \\
18=a(2)^{2}+6 & \\
18=4 a+6 & \\
12=4 a & \quad \text { answer } \\
a=3 & y=3(x-10)^{2}+6
\end{array}
$$

1)

x	y
2	-5
3	-4
4	-1

2)

x	y
-1	3
0	1
1	-5

3)

x	y
0	-7
1	-4
2	5

graph the points in each x / y-chart, then "reflect" the symmetrical points to the opposite side

