Algebra II Section 5-5

VERTEX FORM

QUADRATIC FUNCTION VERTEX FORM: $y = a(x - h)^2 + k$ where the vertex = (h,k), the axis of symmetry is x = h and the direction of opening is up if "a" is positive and down if it is negative.

Examples (in, or almost in vertex form)

Examples (not in vertex form):

3) $y = \frac{1}{2}x^2 - 7x + \frac{32}{2}$ 1) $y = x^2 - 8x + 11$ 2) $y = -5x^2 - 10x - 9$ 1/2 of 8 squared = 16, $2y = x^2 - 14x + 3$ $\frac{y}{-5} = x^2 + 2x + \frac{9}{5}$ +16 for factoring, -16 @ the end $2y = x^2 - 14x + 49 + 3 - 49$ $\frac{y}{-5} = x^2 + 2x + 1 + \frac{9}{5} - 1$ $2y = (x - 7)^2 - 46$ $y = x^2 - 8x + 16 + 11 - 16$ divide by 2 to get y by itself y = (x - 4)(x - 4) + 11 - 16 $\frac{y}{-5} = (x+1)^2 + \frac{4}{5}$ mult by -5 to get y by itself $y = \frac{1}{2}(x-7)^2 - 23$ $y = (x - 4)^2 - 5$ $y=-5(x+1)^2-4$ V=(4, -5) AOS: x = 4 up V = (-1, -4) AOS: x = -1 down V=(7, -23) AOS: x = 7 up

1)	X	У	2) >	у	3)	X	У
	2	-5	-1	3		0	-7
	3	-4	0	1		1	-4
	4	-1	1	-5		2	5

graph the points in each x/y-chart, then "reflect" the symmetrical points to the opposite side

