REMAINDER AND FACTOR THEOREMS

Review $f(\#)$ from section 6-4. Too easy! So, try a tough one without the calculator.

Find $f(2)$ for: $\quad x^{7}-x^{6}+x^{5}+x^{4}-x^{3}+x^{2}-\quad x+$
This problem will vary from class to class

Use synthetic "SUBSTITUTION" to find $g(3)$ and $g(-5)$ for each of the following functions.

1) $g(x)=2 x^{4}+x^{3}-28 x^{2}+10 x+100$
2) $g(x)=x^{5}-14 x^{3}+40 x^{2}+1$

3	2	1	-28	10	100
		6	21	-21	-33
	2	7	-7	-11	67

Answer: 67

Determine if the binomial given is a factor of the polynomial given.

Given a polynomial and one of its factors, find the remaining factors of the polynomial.

