## SECTION 6-4 ROOTS \& ZEROS

Review: Find all the zeros of the following functions by factoring. First, determine how many zeros (roots or solutions) you are looking for.


The downfall of section 6~8. Find all the zeros for the following function: $f(x)=x^{5}+3 x^{2}-18$
can't factor it, there must be another way...stay tuned

## COMPLEX CONJUGATES THEOREM:

For every complex root that exists there is a matching conjugate root that also exists.
Examples:

1) Root: $12-3 i, \ldots 12+3 i$
2) Root: $-3+8 i \quad-3-8 i$
3) Root: $5+3 i \sqrt{2} \quad 5-3 i \sqrt{2}$
4) Root: $-7 i \quad 0+7 i$ or just $7 i$

Write a polynomial function of least degree that has the given zeros.

## 1) zeros: $3,-2,-1$

$$
\begin{aligned}
& f(x)=(x-3)(x+2)(x+1) \\
& \text { FOIL: } f(x)=\left(x^{2}-x-6\right)(x+1) \\
& \text { BOX: } f(x)=x^{3}-7 x-6
\end{aligned}
$$

2) zeros: $\pm 5,2,0$

$$
\begin{array}{ll}
f(x)=x(x-5)(x+5)(x-2) \\
\text { DIST: } x(x-2) & f(x)=\left(x^{2}-2 x\right)(x-5)(x+5) \\
\text { FOIL: }(x-5)(x+5) & f(x)=\left(x^{2}-2 x\right)\left(x^{2}-25\right) \\
\text { FOIL: }\left(x^{2}-2 x\right)\left(x^{2}-25\right) & f(x)=x^{4}-2 x^{3}-25 x^{2}+50 x
\end{array}
$$

4) zeros: $1,2+i \quad 2-l$ is automatically the $3^{\text {rd }}$ root

$$
\begin{aligned}
& f(x)=(x-1)[x-(2+i)][x-(2-i)] \\
& f(x)=(x-1)(x-2-i)(x-2+i) \\
& \text { BOX: }(x-2-i)(x-2+i) \\
& f(x)=(x-1)\left(x^{2}-4 x+5\right) \text { BOX again: } \\
& f(x)=x^{3}-5 x^{2}+9 x-5
\end{aligned}
$$

