SECTION 7-1
 OPERATIONS ON FUNCTIONS

The following should be review...

Use the two functions shown to compute: $\quad(\mathrm{f}+\mathrm{g})(\mathrm{x}) \quad(\mathrm{f}-\mathrm{g})(\mathrm{x}) \quad(\mathrm{f} \cdot \mathrm{g})(\mathrm{x}) \quad\left(\frac{f}{g}\right)(x)$

$$
f(x)=2 x^{2}-7 x-4 \quad \& \quad g(x)=x-6
$$

$\begin{gathered} (f+g) \\ =\left(2 x^{2}-7 x-4\right)+(x-6) \end{gathered}$ combine like terms $=2 x^{2}-6 x-10$	(f-g) $=\left(2 x^{2}-7 x-4\right)-(x-6)$ distribute the neg. sign $\begin{aligned} & =2 x^{2}-7 x-10-x+6 \\ & =2 x^{2}-8 x-4 \end{aligned}$	Box: $2 \mathrm{x}^{2} \quad-7 \mathrm{x} \quad-4^{(f \bullet g)}$				
		x	$2 x^{3}$	$-7 x^{2}$	-4x	$=2 x^{3}-19 x^{2}+38 x+24$
		-6	-12x ${ }^{2}$	42x	24	

We are leaving division out for reasons I won't bother you with.

The following should not be review...

Tyrone has $\$ 180$ deducted from every paycheck for retirement. He can have these deductions taken before or after taxes are applied to his taxable income. His federal income tax rate is 18%.

Let $\mathrm{x}=$ Tyrone's pay
Write a function $r(x)$ that represents his pay less retirement.
Write a function $\mathrm{t}(\mathrm{x})$ that represents his pay less taxes.

$r(x)=x-180$

If Tyrone earns $\$ 2200$ every pay period, find the difference in his net income if he has the retirement deduction taken before or after taxes.

Retirement first $\mathrm{t}(\mathrm{r}(2200))$

1) find $r(2200)=2200-180$

$$
=\$ 2020
$$

2) find $t(2020)=2020-0.18(2020)$

$$
\begin{aligned}
& =2020-363.69 \\
& =\$ 1656.40
\end{aligned}
$$

Taxes first: $\mathrm{r}(\mathrm{t}(2200))$

1) find $t(2200)=2200-0.18(2200)$

$$
\begin{aligned}
& =2200-396 \\
& =\$ 1804
\end{aligned}
$$

2) find $r(1804)=1804-180$

$$
=\$ 1624
$$

[^0]
COMPOSITION OF FUNCTIONS

Suppose $f(x)=8-9 x, g(x)=2 x^{2}-1$ and $h(x)=x-x^{2}$

Find the following: 1) $(f \circ g)(3)$

$$
\begin{aligned}
& \hline \mathrm{g}(3)= 2(3)^{2}-1 \\
&=2(9)-1 \\
&=18-1 \\
&=17 \\
& \mathrm{f}(17)= 8-9(17) \\
&= 8-153 \\
&=-145 \\
&(\mathrm{f} \circ \mathrm{~g})(3)=-145
\end{aligned}
$$

4) $[f \circ g](x)$

Plug entire g -function into f
$=8-9\left(2 \mathrm{x}^{2}-1\right)$
simplify
$=8-18 \mathrm{x}^{2}+9$
$=-18 \mathrm{x}^{2}+17$
$[\mathrm{f} \circ \mathrm{g}](\mathrm{x})=-18 \mathrm{x}^{2}+17$

2) $h(f(2))$
3) $\mathrm{g}[\mathrm{f}(\mathrm{h}(1))]$

$$
\begin{aligned}
\mathrm{f}(2)=8 & -9(2) \\
& =8-18 \\
& =-10 \\
\mathrm{~h}(-10) & =-10-(-10)^{2} \\
& =-10-100 \\
& =-110 \\
\mathrm{~h}(\mathrm{f}(2)) & =-110
\end{aligned}
$$

5) $g(f(x))$

$$
\begin{aligned}
\mathrm{h}(1)= & 1-1^{2} \\
& =1-1 \\
& =0
\end{aligned}
$$

$$
\mathrm{f}(0)=8-9(0)
$$

$$
=8-0
$$

$$
=8
$$

$$
\mathrm{g}(8)=2(8)^{2}-1
$$

$$
=2(64)-1
$$

$$
=128-1
$$

$$
=127
$$

$$
\mathrm{g}[\mathrm{f}(\mathrm{~h}(1))]=127
$$

DOES A COMPOSTION OF FUNCTIONS EXIST?

if so, find its domain and range.

Plug entire f-function into g

$$
=2(8-9 x)^{2}-1
$$

simplify (FOIL)
$=2(8-9 x)(8-9 x)-1$
$=2\left(64-72 x-72 x+81 x^{2}\right)-1$
$=2\left(64-144 x+81 x^{2}\right)-1$
$=128-288 \mathrm{x}+162 \mathrm{x}^{2}-1$
$=162 x^{2}-288 x+127$
$\mathrm{g}(\mathrm{f}(\mathrm{x}))=162 \mathrm{x}^{2}-288 \mathrm{x}+127$

Suppose $f=\{(7,8),(5,3),(9,8),(11,4)\}$ and $g=\{(5,7),(3,5),(7,9),(9,11)\}$

To find $f \circ g$, start with the x-coordinate in the " g " function (5), link it to its y-coordinate (7), find the matching x-coordinate in the " f " function (7), and link it to its y-coordinate (8). ie. (5, 8)

Find $f \circ g$ and $g \circ f$

$$
\mathrm{g} \circ \mathrm{f}
$$

$\{(7, ?),(5,5),(9, ?),(11, ?)\}$
since $(5,5)$ is the only set of coordinates that exists,
$\mathrm{g} \circ \mathrm{f}=\{(5,5)\}$

[^0]: $1656.40-1624=\$ 32.40$ Tyrone would receive $\$ 32.40$ more in net pay if he had his retirement taken out before taxes.

