INVERSE FUNCTIONS AND RELATIONS

Find the inverse of each relation (given in coordinate form)

1)	$\mathrm{f}=\{(4,-7),(-9,2),(0,0),(-3,-8)\}$	$\mathrm{f}^{-1}=\{(-7,4),(2,-9),(0,0),(-8,-3)\}$
2)	$\mathrm{h}=\{(-0.7,1.2),(10,9),(14,1.2)\}$	$\mathrm{h}^{-1}=\{(1.2,-0,7),(9,10),(1.2,14)\}$

**** brainiac time! Why are they asking you for an inverse relation and not an inverse function?
h^{-1} is technically not a function since it has a
duplicate x -coordinate (1.2) in its domain

Write an inverse function for

 each function given. Keep in mind what you did with the coordinates earlier!!
4) $y=6-5 x$

$$
\begin{array}{ll}
\text { switch the } x \& y, & x=6-5 y \\
\text { then solve for } y & x-6=-5 y
\end{array}
$$

$$
-\frac{x}{5}+\frac{6}{5}=y \quad \text { or correct } \quad y^{-1}=-\frac{x}{5}+\frac{6}{5}
$$

6) $g(x)=\frac{2 x-4}{3}$

$$
\begin{aligned}
& x=\frac{2 y-4}{3} \\
& 3 \mathrm{x}=2 \mathrm{y}-4 \\
& 3 \mathrm{x}+4=2 \mathrm{y}
\end{aligned} \quad g^{-1}(x)=\frac{3}{2} x+2
$$

5) $\quad f(x)=\frac{2}{3} x+8$

$$
\text { 7) } \quad x=-3
$$

$$
\begin{aligned}
& x=\frac{2}{3} y+8 \\
& x-8=\frac{2}{3} y \\
& \frac{3}{2} x-12=y \quad f^{-1}(x)=\frac{3}{2} x-12
\end{aligned}
$$

$$
y=-3 \quad \text { done }!
$$

$$
\text { no need to write } y^{-1} \text { since }
$$

$$
\text { there was no } y \text { in the }
$$

original problem

Now graph 'em. Graph both the original function $\&$ the inverse function on the same grid. Make sure to label them both, and if need be include the line of symmetry.

6)

Determine if the following pairs of functions are inverses of one another.
8)

$$
f(x)=\frac{3}{4} x-6
$$

$$
g(x)=\frac{4}{3} x+8
$$

$\mathrm{f} \circ \mathrm{g}$	$\mathrm{g} \circ \mathrm{f}$
$=3 / 4(4 / 3 \mathrm{x}+8)-6$	$=4 / 3(3 / 4 \mathrm{x}-6)+8$
$=\mathrm{x}+6-6$	$=\mathrm{x}-8+8$
$=\mathrm{x}$	$=x$

$f(x)$ and $g(x)$ are inverses of one another since the composition of both functions resulted in "x".

Both results must $=x$ (and nothing else) in order for the functions to be inverses.
9)

$$
f(x)=4 x+\frac{1}{3}
$$

$$
g(x)=\frac{1}{4} x-3
$$

$\mathrm{f} \circ \mathrm{g}$
$=4(1 / 4 \mathrm{x}-3)+1 / 3$
$=\mathrm{g} \circ \mathrm{f}$
$=\mathrm{x}-35 / 3$

Since the first composition did not "literally" equal "x", there is no need to compute the second one.

The answer is: No, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are not inverses.

