SECTION 8-2

$n^{\text {th }}$ Roots

COMMIT TO MEMORY!!!

Square roots that come out even:					
$\sqrt{1}$	=	1	$\sqrt{36}$	=	6
$\sqrt{4}$	=	2	$\sqrt{49}$	=	7
$\sqrt{9}$	=	3	$\sqrt{64}$	=	8
$\sqrt{16}$	=	4	$\sqrt{81}$	=	9
$\sqrt{25}$	=	5	$\sqrt{100}$	=	10

USE OF THE ABSOLUTE VALUE IN AN $\mathrm{n}^{\text {th }}$-ROOT ANSWER

Example: $\quad \sqrt{144 x^{6}}=12\left|\mathrm{x}^{3}\right|$

WHY??? we do not know whether the x was positive or negative to start with.
Unless otherwise indicated a square root is assumed to be a positive answer so we must force the x^{3} in the answer to be positive by including the absolute value

EXAMPLES (McConnell Method)

EXAMPLES (Short-cut Method)

3) $\sqrt{49 n^{10} p^{6}}$
4) $\sqrt[3]{125 d^{27}}$
5) $\sqrt[3]{-8}$

$$
=\sqrt[2]{49 n^{10} p^{6}}
$$

square root of $49=7$, divide
the exponents by the root no
cubed root of $125=5$, divide
the exponents by the root no

$$
=-2
$$

$$
=7 \mathrm{n}^{5} \mathrm{p}^{3}
$$

$$
=5 \mathrm{~d}^{9}
$$

6) $\sqrt[3]{-64(h j)^{3} k^{12}}$
7) $-\sqrt{36 w^{8}}$
8) $\sqrt[4]{x^{8} y^{16} z^{4}}$
$=(-1) \cdot 6 w^{4}$
$=x^{2} y^{4} z$
$=-4 \mathrm{hjk}{ }^{4}$
$=-6 w^{4}$
9) $\sqrt{\frac{9}{100}}$
10) $\sqrt[3]{\frac{1}{27}}$
11) $-\sqrt[4]{(-9)^{2}}$
$=\frac{\sqrt{9}}{\sqrt{100}}$
$=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}$
$=\frac{3}{10}$
$=\frac{1}{3}$

$$
=(-1) \sqrt[4]{81}
$$

$$
=-3
$$

