SECTION 8-2

nth Roots

COMMIT TO MEMORY!!!

Square roots that come out even:					
$\sqrt{1}$	=	1	$\sqrt{36}$ =	6	
$\sqrt{4}$	=	2	$\sqrt{49}$ =	- 7	
$\sqrt{9}$	=	3	$\sqrt{64}$ =	8	
$\sqrt{16}$	=	4	$\sqrt{81}$ =	9	
$\sqrt{25}$	=	5	$\sqrt{100}$ =	: 10	

Cubed roots that come out even:				
$\sqrt[3]{1} = 1$	$\sqrt[3]{64} = 4$			
$\sqrt[3]{8} = 2$	$\sqrt[3]{125} = 5$			
$\sqrt[3]{27} = 3$				

USE OF THE ABSOLUTE VALUE IN AN $\ n^{th}\mbox{-}ROOT$ ANSWER

Example: $\sqrt{144x^6} = 12 |x^3|$ WHY??? we do not know whether the x was positive or negative to start with. Unless otherwise indicated a square root is assumed to be a positive answer so we must force the x^3 in the answer to be positive by including the absolute value

EXAMPLES (McConnell Method)

EXAMPLES (Short-cut Method)

3)
$$\sqrt{49n^{10}p^{6}}$$

 $= \sqrt[2]{49n^{10}p^{6}}$
Square root of 49 = 7, divide
the exponents by the root no.
 $= 7n^{5}p^{3}$
(b) $\sqrt[3]{-64(hj)^{3}k^{12}}$
 $= -4(hj)^{1}k^{4}$
 $= -4(hj)^{1}k^{4}$
 $= -4(hj)^{1}k^{4}$
 $= -4(hj)^{1}k^{4}$
 $= -4(hj)^{1}k^{4}$
 $= -6w^{4}$
(c) $\sqrt{\frac{9}{100}}$
 $= \sqrt{\frac{9}{100}}$
 $= \sqrt{\frac{9}{\sqrt{100}}}$
(c) $\sqrt[3]{\frac{1}{27}}$
 $= \sqrt{\frac{3}{1}}$
 $= (-1)\sqrt[4]{81}$

$$=\frac{3}{10}$$
 $=\frac{1}{3}$ $=-3$