Section 8-5

THINGS TO LOOK FOR:

1) An even root can never equal a negative number.
2) You must check even root problems where there are multiple variables involved.

Question??? When solving an equation,
how do you get rid of an addition?
how do you get rid of a multiplication?
so...how do you get rid of a(square root? $)^{2} \quad A(\text { cubed root? })^{3} \quad A(\text { fourth root? })^{4}$

EXAMPLES:

$$
\text { 1) } \begin{array}{r}
\sqrt{2 y+3}=7 \\
\begin{array}{r}
\left.(\sqrt{2 y+3})^{2}=7\right)^{2} \\
2 y+3=49 \\
2 y=46 \\
y=23
\end{array}
\end{array}
$$

2) $-3=\sqrt[3]{y-2}$

$$
\begin{gathered}
\left.(-3)^{3}=\sqrt[3]{y-2}\right)^{3} \\
-27=y-2 \\
-25=y
\end{gathered}
$$

THE ONLY RULE: 1) Must get the radical by itself first before squaring, cubing, etc.
3) $\sqrt[4]{3 n-4}=\sqrt[4]{n-2}$
4) $\sqrt{-5 n+19}+10=11$

$$
\begin{aligned}
& \text { subt. } 10 \text { first (must have root by itself) } \\
& \qquad \begin{aligned}
(\sqrt{-5 n+19})^{2} & =(1)^{2} \\
-5 n+19 & =1 \\
-5 n & =-18 \\
n & =3.6
\end{aligned}
\end{aligned}
$$

THE TOUGH ONE. If there is more than one radical, get the
"toughest" one by itself,

$$
\text { 5) } \begin{gathered}
2 x^{1 / 3}+8=0 \\
2 \sqrt[3]{x}+8=0 \\
2 \sqrt[3]{x}=-8 \\
\sqrt[3]{x}=-4 \\
(\sqrt[3]{x})^{3}=(-4)^{3} \\
x=-64
\end{gathered}
$$

6)

$$
\begin{aligned}
& 5=17+3(x-2)^{1 / 2} \\
& 5=17+3 \sqrt{x-2} \\
& -12=3 \sqrt{x-2} \\
& -4=\sqrt{x-2} \\
& \text { stop! square roots cannot } \\
& \text { equal negative answers! }
\end{aligned}
$$

Homework: pg 425 1-3, 11-18, 23-26 or pg 425 11-18, 23-28 then.... ????
7)

$$
\sqrt{x-15}=3-\sqrt{x}
$$

8) $\sqrt{y+3}-\sqrt{y-17}=2$
9) $\sqrt{x-15}=3-\sqrt{x}$

$(\sqrt{x-15})^{2}(3-\sqrt{x})^{2}$	
$\mathrm{x}-15$	$=(3-\sqrt{x})(3-\sqrt{x})$
$\mathrm{x}-15$	$=9-3 \sqrt{x}-3 \sqrt{x}+\mathrm{x}$
$\mathrm{x}-15$	$=9-6 \sqrt{x}+\mathrm{x}$
-15	$=9-6 \sqrt{x}$
-24	$=-6 \sqrt{x}$
4	$=\sqrt{x}$
16	$=x$

8) $\sqrt{y+3}-\sqrt{y-17}=2$

$$
\left.\begin{array}{l}
\sqrt{y+3}=\sqrt{y-17}+2 \\
(\sqrt{y+3})^{2}=(\sqrt{y-17}+2)^{2} \\
y+3=(\sqrt{y-17}+2)(\sqrt{y-17}+2) \\
y+3=y-17+4 \sqrt{y-17}+4 \\
y+3=y-13+4 \sqrt{y-17} \\
3
\end{array}\right)=-13+4 \sqrt{y-17} .
$$

