GRAPHING RATIONAL EQUATIONS

WARM UP

Answer the following

1) $\frac{44}{2}=22$
2) $\frac{-39}{13}=-3$
3) $\frac{24}{0}=$
undefined can't divide by 0

For each of the following rational functions, determine what values of x cannot be used.

1) $\quad f(x)=\frac{10}{x+9} \quad x \neq-9$
2) $f(x)=\frac{x-6}{(x-2)(3 x+1)}$
$x \neq 2,-1 / 3$
3) $f(x)=\frac{-2}{x^{2}-7 x+12}$

factor first!
$(x-4)(x-3)$
so, $x \neq 4,3$

4) $\quad f(x)=\frac{x}{8 x^{2}+12 x}$

GCF first!
$4 x(2 x+3)$
so, $x \neq 0,-3 / 2$

Asymptote - A line that the graph of a function approaches, but never touches
Here is the graph of $y=\frac{2}{x-1}$

The dashed line in red is the asymptote.

It's equation is $x=1$

Use your graphing calculator to graph this function.
$f(x)=\frac{x(x+3)}{x}$

Why would there be a straight line?

Name the value of x for each hole for each function.
5) $\quad f(x)=\frac{x+2}{(x-5)(x+2)}$
10) $f(x)=\frac{x^{2}-36}{x-6}$
11) $f(x)=\frac{6 x+4}{3 x^{2}+5 x+2}$
$x=-2$ is the hole. The reason is that both the numerator and denominator have an ($x+2$), which means they can cancel.

Factor first!

$$
f(x)=\frac{(x+6)(x-6)}{x-6}
$$

hole: $x=6$

Factor first!

$$
f(x)=\frac{2(3 x+2)}{(3 x+2)(x+1)}
$$

hole: $x=-2 / 3$

- determine any vertical asymptotes first, then draw in the appropriate vertical dashed lines
- use an x / y-chart for each section of the graph to establish any horizontal asymptote.

For each of the following functions, name any asymptotes and, if they exist, any holes.
14) $f(x)=\frac{3}{x(4 x-1)}$

Asym: \qquad

Hole: \qquad
15) $f(x)=\frac{x+2}{x^{2}+9 x+14}$

Asym: \qquad

Hole: \qquad

$$
f(x)=\frac{x}{3 x+12}
$$

Asym: \qquad

Hole: \qquad
17) Graph $f(x)=\frac{4}{x^{2}-x-2}$

