Algebra II

A-1 SOLVING EQUATIONS

Examples:

Steps for solving equations:

1) Simplify
2) Get var. on 1 -side
3) Add or subt.
4) Mult. or div.
5) Check - optional

$$
\begin{array}{lll}
\text { 1) } & \text { 2) } & 10=-1+4 x-9+x \\
-\frac{-7-7}{3} & & 10=-10+5 x \\
\frac{3}{3} x=\frac{-27}{3} & 20=5 x \\
x=-9 & 4=x \\
& & \\
& \text { 4) } & \frac{3}{5} n-6=-9 \\
3(5-2 x)=4 x+22 & & \frac{3}{5} n=-3 \\
15-6 x=4 x+22 & \frac{5}{3} \bullet \frac{3}{5} n=-3 \bullet \frac{5}{3} \\
15=10 x+22 & & n=-5
\end{array}
$$

5)

$$
\begin{aligned}
& 11=2(6 x+9)-(1+12 x) \\
& 11=12 x+18-1-12 x \\
& 11=12 x-12 x+18-1 \\
& 11=18-1 \\
& 11=17
\end{aligned}
$$

6) $\frac{2}{3} y+\frac{1}{6}=2-\frac{y}{12}$
$\frac{8}{12} y+\frac{2}{12}=\frac{24}{12}-\frac{y}{12}$
Change all to common denominators
$8 y+2=24-y$
$9 y+2=24$
No Solution
$9 y=22$
$y=22 / 9$

Write an algebraic expression to represent each verbal expression.

7) the sum of 6 and twice a number $6+2 n$	8) ten less than a number squared	9) the product of six and the difference of a number and two $6(n-2)$

10) A banquet room can seat a maximum of 70 people. The coach, trainer, principal and vice principal have invited the award winning girl's tennis team to a celebration dinner at this particular venue. If the tennis team consists of 22 girls, how many guests can each girl bring?

Let $\mathrm{n}=$ the number of guests each girl can bring

$$
\begin{gathered}
22 \mathrm{n}+26=70 \\
22 \mathrm{n}=44 \\
\mathrm{n}=2
\end{gathered}
$$

