The key for solving inequalities is	Find the mistake(s) in the work for the inequality.
to switch (reverse) the $>,<, \geq$ or \leq	$3(2-x)>-12$
	$6-3 x>-12$
when dividing (or mult.) by a negative	$-3 x>-18$
	The > needed to be switched to a <

Graph each inequality on the number line provided.

Examples:
Solve each inequality, then graph the solution set on a number line.

Since \#-line is understood to be infinite, you can be "lazy" and just put one grid mark.
4) $2 \mathrm{w}+15<-13$

$$
\begin{aligned}
& 2 \mathrm{w}<-28 \\
& \mathrm{w}<-14
\end{aligned}
$$

do not switch (divided by positive 2)
5) $-22 \geq 3-5$ n

-25
$5 \leq-5 n$
n
n
≥ 5
flip the final answer so
the variable is first

8) $\frac{2}{5}+\frac{x}{10}<\frac{6}{5}$
$\frac{4}{10}+\frac{x}{10}<\frac{12}{10}$
$4+x<12$
$\mathrm{x}<8$

$$
\begin{aligned}
6-2 x-7 & \geq 9 \\
-2 x-1 & \geq 9 \\
-2 x & \geq 10 \\
x & \leq-5
\end{aligned}
$$

6) $\frac{3 r-4}{7}>r$

$$
3 r-4>7 r
$$

$$
-4>4 r
$$

$$
-1>r
$$

$$
r<-1
$$

9) $\quad 3 a>4(a-2)-a$

$$
\begin{aligned}
3 \mathrm{a} & >4 a-8-a \\
3 a & >3 a-8 \\
0 & >8
\end{aligned}
$$

*true statement, thus: answer: infinite solutions
10) Jim is selling advertising space in Math Unlimited Magazine to local businesses. Jim earns 5\% commission for every advertisement he sells plus a salary of $\$ 350$ per week. If the average amount of money that a business will spend on an advertisement is $\$ 500$, how many advertisements must he sell each week to make a salary of at least $\$ 1000$?

Let $\mathrm{x}=$ the number of advertisements sold.
500 x would equal money received for several sales.
$.05(500 x)$ would equal Jim's share (or commission).
$.05(500 \mathrm{x})+350$ equals Jim's commission plus weekly salary.
$.05(500 x)+350 \geq 1000$ would net Jim at least 1000 bucks.
Solve:

$$
\begin{gathered}
25 x+350 \geq 1000 \\
25 x \geq 650 \\
x \geq 26
\end{gathered}
$$

Jim must sell at least 26 ads to make $\$ 1000 /$ week

