Graph each pair of inequalities using the "above \& below" method.

"AND" means shade where the "above" and "below" lines overlap or intersect
"OR" means shade __ where either line is graphed (transfer both lines onto the number line)

Examples:
Solve each inequality, then graph the solution set.

If there is no word
("and" or "or") shown,
the problem is assumed
to be "and". Create two
problems to solve by
SPLITTING it up.

Solution set: $\quad-8<x<3$
\qquad

Don't forget about switching the inequality when multiplying or dividing both sides of the inequality by a negative.
3) $8 \mathrm{j}<5 \mathrm{j}-21$ or $4 \geq 31-9 \mathrm{j}$
4) $6-\mathrm{x}<2$ or $\frac{x-15}{-3}>1$

$$
\begin{aligned}
& -x<-4 \quad \text { or } \quad x-15<-3 \\
& x>4 \quad x<12 \\
& x>4 \text { or } \mathrm{x}<12
\end{aligned}
$$

Solution set: infinite solutions
5) The Exterior Angle Inequality Theorem states that an exterior angle measure is greater than the measure of either of its corresponding remote interior angles. Write two inequalities to express the relationship among the measures of the angles in $\triangle \mathrm{ABC}$.

```
\angle4>\angle1 and }\angle4>\angle
```


A
C

Graph each absolute value inequality on a number line.

Solution set:

Compound inequality - consists of two inequalities joined by the word "and" or "or". If an absolute value inequality is considered a compound inequality, there must be two versions of the problem to solve!

Examples:
Solve each absolute value inequality, the graph the solution set.

Solution set: $2<k<15$
6) $|b+12| \geq 7$
$\mathrm{b}+12 \geq 7$ or $\mathrm{b}+12 \leq-7$
$\mathrm{b} \geq-5 \quad \mathrm{~b} \leq-19$
$\mathrm{b} \geq-5$ or $\mathrm{b} \leq-19$

Solution set: $\quad \mathrm{b}<-19$ or $\mathrm{b}>-5$

Don't forget about switching the inequality when multiplying or dividing both sides of the inequality by a negative.

Short cut: absolute value "ands" are always shaded between, and "ors" go opposite directions.
7) $|4-5 y|>16$
8) $1>|8-n|$

| $4-5 \mathrm{y}>16$ or | $4-5 \mathrm{y}<-16$ |
| :---: | :---: | :---: |
| $-5 \mathrm{y}>12$ | $-5 \mathrm{y}<-20$ |
| $\mathrm{y}<-12 / 5$ | $\mathrm{y}>4$ |
| $\mathrm{y}<-12 / 5$ or $\mathrm{y}>4$ | |

Solution set: $\quad 7<n<9$
\qquad

Solution set: $\mathrm{y}<-12 / 5$ or $\mathrm{y}>4$

TOUGH ONE
You can do it!

TOUGH ONE
You can do it!

$$
\begin{gathered}
\text { 9) } 5\left|\frac{7}{16}+\frac{9}{4} x\right|<-35 \\
\left|\frac{7}{16}+\frac{9}{4} x\right|<-7 \\
\begin{array}{l}
\text { absolute values cannot be } \\
\text { less than a negative number. } \\
\text { Therefore: No Solution! }
\end{array} \\
\hline
\end{gathered}
$$

6) Hypoglycemia (low blood sugar) and hyperglycemia (high blood sugar) are potentially dangerous and occur when a person's blood sugar fluctuates by more than 38 mg from the normal level. If the normal level is 88 mg , write and solve an absolute value inequality to describe blood sugar levels that are considered potentially dangerous
```
Since a person can only be above OR below the safe
level, we will use a greatOR than sign
|x-88|> 38
Solve: }x-88>38 or x-88<-3
    x}>126 x<5
    {x<50 or x>126 }
```

