Chapter M Section 1 Introduction to matrices

Matrices are referred to by the number of rows by the number of columns.
2×2
$\left[\begin{array}{cc}-3 & 4 \\ -5 & -1\end{array}\right]$
3×2
$\left[\begin{array}{cc}-3 & 4 \\ -5 & -1 \\ 10 & 6\end{array}\right]$
$\left[\begin{array}{ccc}-3 & 4 & 0 \\ -5 & -1 & 2\end{array}\right]$

Solving for variables in a matrix.
Examples:

1) $\left[\begin{array}{cc}-3 & 8 x \\ x+y & -1\end{array}\right]=\left[\begin{array}{cc}-3 & 4 \\ -5 & -1\end{array}\right]$
2) $\left[\begin{array}{cc}4 x-3 & 3 y \\ 7 & 13\end{array}\right]=\left[\begin{array}{cc}9 & -15 \\ 7 & 2 z+1\end{array}\right]$

$$
\begin{array}{cr}
8 x=4 & x+y=-5 \\
x=2 \text { sub in }-> & 2+y=-5 \\
y=2, y=-7 & y=-7 \\
x
\end{array}
$$

3)

$$
\left[\begin{array}{l}
x+3 y \\
3 x+y
\end{array}\right]=\left[\begin{array}{c}
-13 \\
1
\end{array}\right]
$$

4)

$$
\begin{array}{ccc}
4 x-3=9 & 3 y=-15 & 13=2 z+1 \\
4 x=12 & y=-5 & 12=2 z \\
x=3 & & 6=z \\
x=3, y=-5, z=6 &
\end{array}
$$

$$
\left[\begin{array}{ccc}
f+h & 7 & -3 j \\
f-j & 0 & -5 \\
6 & 1 & 2 h
\end{array}\right]=\left[\begin{array}{ccc}
11 & 7 & 9 \\
k & 0 & -5 \\
3 f+j & 1 & 16
\end{array}\right]
$$

$$
\begin{array}{|cccc}
\hline f+h=11 & -3 j=9 & f-j=k & 6=3 f+j \\
& j=-3 & & 2 h=16 \\
\text { Substitute } j=-3 \text { and } h=8 \text { to find the other values. } \\
f+8=11 & & 3-(-3)=k & \text { Did not need } \\
f=3 & & 6=k & 4^{\text {th }} \text { equation } \\
& & \\
& f=3, h=8, j=-3, k=6 & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& x+3 y=-13 \quad 3 x+y=1 \\
& \text { Solve as a system of equations. } \\
& \text { (substitution or elimination) } \\
& x=-3 y-13 \text { sub in }->3(-3 y-13)+y=1 \\
& -9 y-39+y=1 \\
& -8 y-39=1 \\
& -8 y=40 \\
& x=-3(-5)-13 \text { <-sub in } y=-5 \\
& x=2 \\
& x=2, y=-5
\end{aligned}
$$

Operations with matrices.
Addition/subtractions examples.

$$
\text { If } A=\left[\begin{array}{cc}
-3 & 4 \\
-5 & -1
\end{array}\right] \quad B=\left[\begin{array}{cc}
13 & 10 \\
-7 & 31
\end{array}\right] \quad C=\left[\begin{array}{ccc}
-6 & 9 & -2 \\
-5 & -3 & 8
\end{array}\right]
$$

5) Find $A+B$

6) Find B - A

7) Find $A+C$

Matrices much match in dimension to perform addition or subtraction, therefore $A+C$ is not possible.

Multiplying by a scalar examples.
8) Find $3 A$

9) Find -4C

$$
\left[\begin{array}{lll}
-4(-6) & -4(9) & -4(-2) \\
-4(-5) & -4(-3) & -4(8)
\end{array}\right]=\left[\begin{array}{lll}
24 & -36 & -8 \\
20 & 12 & -32
\end{array}\right]
$$

Multiplying matrices. If $A=\left[\begin{array}{cc}-3 & 4 \\ -5 & -1\end{array}\right]$
10) Find $A B$
11)
$B=\left[\begin{array}{cc}13 & 10 \\ -7 & 31\end{array}\right]$

Find BC
12) Find BD
$A B=$
$\left[\begin{array}{cc}-3(13)+4(-7) & -3(10)+4(31) \\ -5(13)+-1(-7) & -5(10)+-1(31)\end{array}\right]=\left[\begin{array}{cc}-67 & 94 \\ -58 & -81\end{array}\right]$
$B D$ is impossible.
The number of columns in the first matrix must be the same as the number of rows in the second one.

$$
\begin{aligned}
& \mathrm{BC}= \\
& {\left[\begin{array}{lcc}
-13(-6)+10(-5) & 13(9)+10(-3) & 13(-2)+10(8) \\
-7(-6)+31(-5) & -7(9)+31(-3) & -7(-2)+31(8)
\end{array}\right]=\left[\begin{array}{lll}
28 & 87 & 54 \\
-113 & -156 & 262
\end{array}\right]}
\end{aligned}
$$

Applications.

School	First place	Second place	Third place
Central	4	7	3
Franklin	8	9	1
Hayes	10	5	3
Lincoln	3	3	6

The results from a quad swim meet for four schools is shown in the chart. If 7 points was awarded for each first place finish, 4 for second and 2 for third, in what order did the four schools finish?
$\left[\begin{array}{lll}4 & 7 & 3 \\ 8 & 9 & 1 \\ 10 & 5 & 3 \\ 3 & 3 & 6\end{array}\right] \cdot\left[\begin{array}{l}7 \\ 4 \\ 2\end{array}\right]=\left[\begin{array}{l}4(7)+7(4)+3(2) \\ 8(7)+9(4)+1(2) \\ 10(7)+5(4)+3(2) \\ 3(7)+3(4)+6(2)\end{array}\right]=\left[\begin{array}{l}62 \\ 94 \\ 96 \\ 45\end{array}\right]$

$$
\begin{aligned}
& 1^{\text {st }} \text { place: Hayes } \\
& 2^{\text {nd }} \text { place: Franklin } \\
& 3^{\text {rd }} \text { place: Central } \\
& 4^{\text {th }} \text { place: Lincoln }
\end{aligned}
$$

