COLLEGE REVIEW MATH SECTION 4-5 REVIEW Inverse Functions

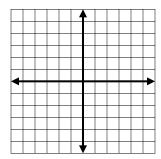
Name	 	 	

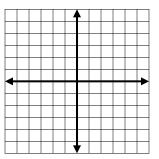
Suppose the function *f* has an inverse and f(-2) = 3, f(2) = -1, f(5) = -2 and f(3) = 0, then find:

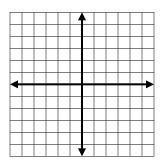
 1) $f^{-1}(3) =$ 2) $f(f^{-1}(-1)) =$

 3) $f^{-1}(-2) =$ 4) $f^{-1}(f^{-1}(0)) =$

Determine if the following graphs have an inverse.


Find a rule for the inverse of each function. (you may assume one exists)


8) f(x) = 5x - 39) $g(x) = \frac{1}{2}x + 6$



Sketch the graph for f(x) and $f^{-1}(x)$ on the same set of axes, then find a rule for $f^{-1}(x)$.

12)
$$f(x) = \frac{1}{2}x - 1$$
 13) $f(x) = (x - 1)^2 - 4; x \le 1$ 14) $f(x) = x^3$

Prove (or disprove) that f(x) and g(x) are inverses of one another.

15)
$$f(x) = \frac{1}{x^3}$$

 $g(x) = \sqrt[3]{x}$
16) $f(x) = \frac{2}{3}x + \frac{1}{2}$
17) $f(x) = \sqrt{6-x}$
 $g(x) = \sqrt[3]{x}$
 $g(x) = \frac{3}{2}x + \frac{3}{4}$
 $g(x) = 6 - x^2$