\qquad

Suppose the function f has an inverse and $\mathrm{f}(-2)=3, \mathrm{f}(2)=-1, \mathrm{f}(5)=-2$ and $\mathrm{f}(3)=0$, then find:

1) $\mathrm{f}^{-1}(3)=$
2) $f\left(f^{-1}(-1)\right)=$ \qquad
3) $\mathrm{f}^{-1}(-2)=$ \qquad 4) $\mathrm{f}^{-1}\left(\mathrm{f}^{-1}(0)\right)=$ \qquad

Determine if the following graphs have an inverse.
5)

6)

7)

Find a rule for the inverse of each function. (you may assume one exists)
8) $f(x)=5 x-3$
9) $g(x)=\frac{1}{2} x+6$
10) $h(x)=x^{3}+3$
11) $f(x)=(x+5)^{2} ; x \geq-5$

Sketch the graph for $f(x)$ and $f^{-1}(x)$ on the same set of axes, then find a rule for $f^{-1}(x)$.
12) $f(x)=\frac{1}{2} x-1$
13) $f(x)=(x-1)^{2}-4 ; x \leq 1$
14) $f(x)=x^{3}$

Prove (or disprove) that $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are inverses of one another.
15) $f(x)=\frac{1}{x^{3}}$
16) $\mathrm{f}(\mathrm{x})=\frac{2}{3} x+\frac{1}{2}$
17) $f(x)=\sqrt{6-x}$
$\mathrm{g}(\mathrm{x})=\sqrt[3]{x}$

$$
\mathrm{g}(\mathrm{x})=\frac{3}{2} x+\frac{3}{4}
$$

$$
g(x)=6-x^{2}
$$

