Find the length of $\overline{A B}$ and the coordinates of the midpoint of $\overline{A B}$.

1) $\mathrm{A}(1,0), \mathrm{B}(7,8)$
2) $\mathrm{A}(-8,-3), \mathrm{B}(7,5)$
3) $\mathrm{A}(-2,-1), \mathrm{B}(4,9)$
4) $\mathrm{A}\left(\frac{1}{2}, \frac{9}{2}\right), \mathrm{B}\left(-2,-\frac{3}{2}\right)$
5) $\mathrm{A}(1.7,5.7), \mathrm{B}(-2.3,5.7)$
6) $\mathrm{A}(-6,8), \mathrm{B}(-1,3)$

Determine which of the following points lie on the graph of the linear equation given.
7) $3 x-2 y=15$
8) $-5 x+4 y=18$
a) $(9,6)$
a) $(-1.2,3.0)$
b) $(8,4)$
b) $\left(3,-\frac{3}{4}\right)$
c) $\left(-\frac{4}{3},-\frac{19}{2}\right)$
c) $(-18,24)$
d) $(3.4,-3.2)$
d) $(-6,-3)$
e) $(-9,-22)$
e) $(3.6,9)$

In exercise 11, graph both equations.
Label the origin, the intersection point and y - intercept of the second equation as R, A, T respectively. Find area of \triangle RAT.
9) $3 x-2 y=6$
10) $4 x+3 y=24$

$$
\text { 11) } \begin{aligned}
& y+x=0 \\
& 6 x-3 y=-9
\end{aligned}
$$

Solve the systems of equations using whatever method seems appropriate. Sketch the graphs of the equations and label the intersection point.
12) $\begin{aligned} & 3 x-5 y=9 \\ & x+y=3\end{aligned}$
13)
$2 x+3 y=15$
$4 x-9 y=3$
14) $x-3 y=4$
$5 x+y=-8$
15) $-2 x-6 y=18$ $x-3 y=6$
16) Plot $Q(1,7), U(3,5), A(4,-1)$ \& $\mathrm{D}(2,1)$. Use the distance formula to show the opposite sides of quadrilateral QUAD are equal in length. What kind of figure is QUAD?
17) Plot $\mathrm{B}(-6,3), \mathrm{O}(-1,6)$, $X(2,1) \& Y(-3,-2)$. Use the distance formula to show that quadrilateral BOXY is a square (and not a rhombus). Hint: showing all four sides are equal in length is not enough proof.
18) Plot the points $\mathrm{A}(-6,7)$,
$B(6,3) \& C(-2,-1)$. Show that $(\mathrm{BC})^{2}+(\mathrm{AC})^{2}=(\mathrm{AB})^{2}$. What can you conclude about $\angle \mathrm{C}$?

1) $10 ;(4,4)$ 6) $5 \sqrt{2} ;(-3.5,5.5)$	11) area $=1.5$	
2) $17 ;(-1 / 2,1)$	7) a, c	12) $(3,0)$
3) $2 \sqrt{34} ;(1,4)$	8) a, d, e	13) $(24 / 5,9 / 5)$
4) $13 / 2 ;(-3 / 4,3 / 2)$	9) area $=3$	14) $(-5 / 4,-7 / 4)$
5) $4 ;(-0.3,5.7)$	10) area $=24$	15) $(-3 / 2,-5 / 2)$
9-15) graphs: See Mr. Paull	$16-18)$ proofs: See Mr. Paull	

