Find the length of \overline{AB} and the coordinates of the midpoint of \overline{AB} .

1) A(1, 0), B(7, 8) 2) A(-8, -3), B(7, 5) 4) $A\left(\frac{1}{2},\frac{9}{2}\right), B\left(-2,-\frac{3}{2}\right)$ 3) A(-2, -1), B(4, 9) 6) A(-6, 8), B(-1, 3) 5) A(1.7, 5.7), B(-2.3, 5.7)

Determine which of the following points lie on the graph of the linear equation given.

7)
$$3x - 2y = 15$$
8) $-5x + 4y = 18$ a) $(9, 6)$ b) $(8, 4)$ c) $\left(-\frac{4}{3}, -\frac{19}{2}\right)$ a) $(-1.2, 3.0)$ b) $\left(3, -\frac{3}{4}\right)$ c) $(-18, 24)$ d) $(3.4, -3.2)$ e) $(-9, -22)$ d) $(-6, -3)$ e) $(3.6, 9)$

In exercises 9 and 10, graph each equation. Label the origin and the x- and y-intercepts as L, O, and G, respectively. Find the area of ΔLOG .

9) 3x - 2y = 610) 4x + 3y = 24 In exercise 11, graph both equations. Label the origin, the intersection point and y- intercept of the second equation as R, A, T respectively. Find area of ΔRAT .

11)
$$y + x = 0$$

 $6x - 3y = -9$

Solve the systems of equations using whatever method seems appropriate. Sketch the graphs of the equations and label the intersection point.

12)	3x - 5y = 9	13)	2x + 3y = 15	14)	x - 3y = 4	15)	-2x - 6y = 18
	$\mathbf{x} + \mathbf{y} = 3$		4x - 9y = 3		5x + y = -8		x - 3y = 6

16) Plot Q(1,7), U(3,5), A(4,-1) & D(2,1). Use the distance formula to show the opposite sides of quadrilateral QUAD are equal in length. What kind of figure is QUAD?	17) Plot B(-6,3), O(-1,6), X(2,1) & Y(-3,-2). Use the distance formula to show that quadrilateral BOXY is a square (and not a rhombus). <i>Hint:</i> showing all four sides are equal in length is not enough proof.	18) Plot the points A(-6,7), B(6,3) & C(-2,-1). Show that $(BC)^2 + (AC)^2 = (AB)^2$. What can you conclude about $\angle C$?
--	--	--

3)
$$-5x + 4y = 18$$

1) 10; (4, 4)	6) $5\sqrt{2}$; (-3.5, 5.5)	11) area = 1.5				
2) 17; (-1/2, 1)	7) a, c	12) (3,0)				
3) $2\sqrt{34}$; (1, 4)	8) a, d, e	13) (24/5, 9/5)				
4) 13/2; (-3/4, 3/2)	9) area = 3	14) (-5/4, -7/4)				
5) 4; (-0.3, 5.7)	10) area = 24	15) (-3/2, -5/2)				
9-15) graphs: See Mr. Paull 16-18) proofs: See Mr. Paull						