Write the equation of the line described.
Place answers in slope-intercept form ($\mathrm{y}=\mathrm{mx}+\mathrm{b}$), exception: \#5.

1) Slope $=-2, y$-intercept $=8$
2) Slope $=\frac{3}{5}$, passes through the origin.
3) Passes through $(-1,4) \&(5,8)$
4) Passes through $(0,5) \&(6,1)$
5) Passes through $(2,-7) \&(2,3)$
6) Passes through $(5,-3) \&(2,-3)$
7) Has x-intercept of -2 and y intercept of 4
8) Has y-intercept of -6 and is parallel to the line with equation: $5 x+4 y=1$
9) Passes through $(8,-2)$ and is perpendicular to the line with equation: $y=7-2 x$
10) Passes through $(-2,4)$ and is parallel to the line that passes through the points $(1,1) \&(5,7)$
11) The perpendicular bisector of the segment joining $(2,4)$ and $(4,-4)$
12) Given $\mathrm{A}(2,0)$ and $\mathrm{B}(8,4)$, show that $\mathrm{P}(3,5)$ is on the perpendicular bisector of $\overline{A B}$.
13) $y=-2 x+8$
14) $y=-\frac{2}{3} x+5$
15) $y=-\frac{5}{4} x-6$
16) See Mr. Paull
17) $y=\frac{3}{5} x$
18) $x=2$
19) $y=\frac{3}{2} x+7$
13a) $\mathrm{JO}=\mathrm{OE}=5 \sqrt{2}$
20) $y=\frac{2}{3} x+\frac{14}{3}$
21) $y=-3$
22) $y=\frac{1}{2} x-6$
13b) $y=\frac{4}{3} x-\frac{2}{3}$
23) $y=2 x+4$
24) $y=\frac{1}{4} x-\frac{4}{3}$
$\mathrm{E}(5,6)$.
(a) Verify that \triangle JOE is isosceles.
(b) Write the equation of the bisector $\angle \mathrm{E}$.
