Use sign analysis to sketch the graph of each equation.

1) $y=(x+1)(x-2)(x-4)$
2) $y=-x(x+5)(x+3)$
3) $y=x^{2}(x+2)$
4) $y=x(1-x)(1+x)(x+1)$
5) $y=(x+1)^{3}(x-2)$
6) $y=x^{2}(x+2)(x-3)(x+4)^{3}$

Factor each polynomial function, and then sketch its graph.
7) $f(x)=x^{3}-4 x^{2}-5 x$
8) $f(x)=x^{5}-2 x^{4}+x^{3}$
9) $f(x)=4 x^{4}-24 x^{3}+35 x^{2}+6 x-9$
(Hint: $x=3$ is a double root.)

Give an equation for each polynomial graph shown. You may assume the x-intercepts are whole numbers.

12)

11)

13)

Use the given set of coordinates as well as the x-intercepts to find the equation of the polynomial graph shown.

18) Assume that the zeros of a cubic polynomial function described are real. Sketch the graph of each function. If such a function is impossible to draw, say so.
a) 3 zeros
b) 2 zeros
c) 1 zero
d) no zeros

For all graphs, see Mr. Paull
10) $y=-(x+3)(x+1)(x-1)$
14) $y=-3 / 8(x+4)(x-2)$
7) $f(x)=x(x+1)(x-5)$
11) $y=-x^{2}(x-3)^{2}$
15) $y=x(x-1)(x-2)$
8) $f(x)=x^{3}(x+1)^{2}$
12) $y=x(x+2)^{2}$
16) $y=-1 / 3 x(x+2)^{2}$
9) $f(x)=(x-3)^{3}(2 x+1)(2 x-1)$
13) $y=(x+3)^{2}(x+1)(x-2)$
17) $y=-1 / 6(x+3)^{3}(x-2)$

