State whether the quadratic function has a maximum or minimum. Then, find the value of \boldsymbol{x} at which the max or min occurs.

1) $f(x)=(x-1)(x-7)$
2) $g(x)=8-(x-2)^{2}$
3) $h(x)=2 x^{2}-6 x+9$
4) $j(x)=1-4 x-3 x^{2}$
5) A farmer wants to make a rectangular enclosure using a wall as one side and 120 yards of fencing for the other three sides.
a) Write a function to express the area, and state its domain.
b) Find the value of \boldsymbol{x} that gives the greatest area.

6) A rectangle has perimeter of 80 cm . If its width is \boldsymbol{x}, express its length and its area in terms of \boldsymbol{x}. What is the maximum area of the rectangle?
7) Suppose you have 102 meters of fence to make two side-by-side rectangular enclosures. The fence will span the outer edges of both rectangles, but will also serve as a barrier between the two as well. What is the maximum area you can achieve for both enclosures?
8) If ball is thrown vertically upward at $30 \mathrm{~m} / \mathrm{s}$, then its approximate height in meters t seconds later is given by the function: $h(t)=30 t-5 \mathrm{t}^{2}$.
a) After how many seconds does the ball hit the ground?
b) What is the domain of $h(t)$?
c) How high does the ball go?
9) $\min ; x=4$
10) $\max ; x=2$
11) $\min ; x=3 / 2$
12) $\max ; x=-2 / 3$

5a) $A(x)=x(120-2 x)$ domain: $0<x<60$
5b) $30 \mathrm{yds}^{2}$
6) length: $40-x$
$A(x)=x(40-x)$
max area: $400 \mathrm{~cm}^{2}$
7) $433.5 \mathrm{~m}^{2}$

8a) 6 seconds
8b) $0 \leq x \leq 6$
8c) 45 m

