Sketch each hyperbola. Give the equations for the asymptotes.

1) $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$
2) $\frac{y^{2}}{16}-\frac{x^{2}}{4}=1$
3) $x^{2}-y^{2}=1$

4) $4 y^{2}-x^{2}=4$
5) $25 x^{2}-16 y^{2}=400$
6) $x y=4$
7) $x y=-4$

8a) Sketch the hyperbola for the equation: $x y=12$ and give the equations for the asymptotes.

8b) Predict where the graph for $(x+3)(y+4)=12$ will be and predict the asymptote equations.
9) Determine, algebraically, the point or points of intersection for the following system of equations:

$$
\begin{aligned}
& x^{2}-y^{2}=1 \\
& x+y=5
\end{aligned}
$$

Find the equation of the hyperbola, with center at the origin that satisfies the given conditions.
10) A vertex $(6,0)$ and a focus $(10,0)$
12) A vertex ($0,-2$) and an asymptote with equation $y=-x$
11) A vertex ($0,-12$) and a focus ($0,-13$)
13) A vertex $(8,0)$ and an asymptote with equation $y=\frac{1}{2} x$

Sketch the hyperbola. Find the coordinates of the vertices and foci. Name the slopes for the asymptotes.
14) $\frac{(x-6)^{2}}{36}-\frac{(y-8)^{2}}{64}=1$
15) $\frac{(y+5)^{2}}{16}-\frac{x^{2}}{9}=1$
16) $y^{2}-\mathrm{x}^{2}-2 \mathrm{y}+4 \mathrm{x}-4=0$
17) $x^{2}-4 y^{2}-2 x+16 y-19=0$

Find the equation of the hyperbola that satisfies the given conditions.
18) Center is $(5,0)$; one vertex is $(9,0)$; one focus is $(10,0)$
20) Foci are $(-1,1)$ and $(7,1)$; length of the major axis is 6 units
19) Vertices are $(4,0)$ and $(4,8)$; asymptotes have slopes ± 1
21) Vertices are ($-2,4$) and ($-2,-2$); one focus is $(-2,-4)$

For all graphs, see Mr. Paull

1) $y= \pm 2 / 3 x$
2) $\frac{y^{2}}{144}-\frac{x^{2}}{25}=1$
3) V: $(2,2),(2,0)$
4) $\frac{y^{2}}{4}-\frac{x^{2}}{4}=1$
5) $y= \pm x$
6) $\frac{x^{2}}{64}-\frac{y^{2}}{16}$
7) $y= \pm 1 / 2 x$
8) $\mathrm{V}:(12,8),(0,8)$
9) V : $(3,2),(-1,2)$
F: $(16,8),(-4,8)$
$\mathrm{F}:(1+\sqrt{5}, 2),(1-\sqrt{5}, 2)$
asymp: $\pm 4 / 3$
asymp: $\pm 1 / 2$
10) $x=0, y=0$
11) $\mathrm{V}:(0,-1),(0,-9)$
12) $x=0, y=0$
F: $(0,0),(0,-10)$
13) $x=-3, y=-4$
asymp: $\pm 4 / 3$
14) $\frac{(x-5)^{2}}{16}-\frac{y^{2}}{9}=1$
15) $\frac{(y-4)^{2}}{16}-\frac{(x-4)^{2}}{16}=1$
16) $\frac{(x-3)^{2}}{9}-\frac{(y-1)^{2}}{7}=1$
17) $\frac{(y-1)^{2}}{9}-\frac{(x+2)^{2}}{16}=1$
