Sketch each hyperbola. Give the equations for the asymptotes.

1)
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$
 2) $\frac{y^2}{16} - \frac{x^2}{4} = 1$ 3) $x^2 - y^2 = 1$

4) $4y^2 - x^2 = 4$ 5) $25x^2 - 16y^2 = 400$ 6) xy = 4

8a)	Sketch the hyperbola for the equation: xy = 12		
	and give the equations for the asymptotes.		of
			eq
8b)	Predict where the graph for $(x + 3)(y + 4) = 12$ will be		
	and predict the asymptote equations.		

9) Determine, algebraically, the point or points of intersection for the following system of equations: $x^2 - y^2 = 1$

x + y = 5

Find the equation of the hyperbola, with center at the origin that satisfies the given conditions.

- 10) A vertex (6, 0) and a focus (10, 0) 11) A vertex (0, -12) and a focus (0, -13)
- 12) A vertex (0, -2) and an asymptote with equation y = -x
- 13) A vertex (8, 0) and an asymptote with equation $y = \frac{1}{2}x$

Sketch the hyperbola. Find the coordinates of the vertices and foci. Name the slopes for the asymptotes.

14)
$$\frac{(x-6)^2}{36} - \frac{(y-8)^2}{64} = 1$$
 15) $\frac{(y+5)^2}{16} - \frac{x^2}{9} = 1$

16) $y^2 - x^2 - 2y + 4x - 4 = 0$ 17) $x^2 - 4y^2 - 2x + 16y - 19 = 0$ Find the equation of the hyperbola that satisfies the given conditions.

18) Center is (5, 0); one vertex is (9, 0);one focus is (10, 0)

19) Vertices are (4, 0) and (4, 8); asymptotes have slopes ±1

20) Foci are (-1, 1) and (7, 1); length of the major axis is 6 units

21) Vertices are (-2, 4) and (-2, -2); one focus is (-2, -4)

For all graphs, see Mr. Paull						
1) $y = \pm 2/3x$	$11) \ \frac{y^2}{144} - \frac{x^2}{25} = 1$	16) V: (2, 2), (2, 0)				
2) $y = \pm 2x$	$12) \frac{y^2}{4} - \frac{x^2}{4} = 1$	F: $(2, 1 + \sqrt{2}), (2, 1 - \sqrt{2})$				
3) y = ±x	13) $\frac{x^2}{64} - \frac{y^2}{16}$	asymp: ±1				
4) $y = \pm 1/2x$	14) V: (12, 8), (0, 8)	17) V: (3, 2), (-1, 2)				
5) $y = \pm 5/4x$	F: (16, 8), (-4, 8)	F: $(1 + \sqrt{5}, 2), (1 - \sqrt{5}, 2)$				
6) x = 0, y = 0	asymp: ±4/3	asymp: ±1/2				
7) x = 0, y = 0	15) V: (0, -1), (0, -9)	18) $\frac{(x-5)^2}{16} - \frac{y^2}{9} = 1$				
8) x = 0, y = 0	F: (0, 0), (0, -10)	19) $\frac{(y-4)^2}{16} - \frac{(x-4)^2}{16} = 1$				
9) x = -3, y = -4	asymp: ±4/3	20) $\frac{(x-3)^2}{9} - \frac{(y-1)^2}{7} = 1$				
10) $\frac{x^2}{36} - \frac{y^2}{64} = 1$		21) $\frac{(y-1)^2}{9} - \frac{(x+2)^2}{16} = 1$				