Use the arc length and area formulas (for sectors) to find the missing measures. Round all answers to nearest hundredth.

$$
\begin{array}{lll}
\text { If } \theta \text { is in degrees: } & \mathrm{s}=\frac{\theta}{360} \cdot 2 \pi r & \mathrm{~K}=\frac{\theta}{360} \cdot \pi r^{2} \\
\text { If } \theta \text { is in radians: } & \mathrm{s}=\mathrm{r} \theta & \mathrm{~K}=\frac{1}{2} \cdot r^{2} \theta
\end{array}
$$

1) A sector of a circle has radius 6 cm and central angle 0.5 radians. Find its arc length and area.
2) A sector of a circle has radius 5 cm and central angle 3 radians. Find its arc length and area.
3) A sector of a circle has arc length 11 cm and central angle 2.2 radians. Find its radius and area.
4) A sector of a circle has arc length 2 cm and central angle 0.4 radians. Find its radius and area.
5) A sector of a circle has area $25 \mathrm{~cm}^{2}$ and central angle 0.5 radians. Find its radius and arc length.
6) A sector of a circle has area $90 \mathrm{~cm}^{2}$ and 0.2 radians. Find its radius and arc length.
7) A sector of a circle has central angle 175° and radius 8 inches. Find its arc length.
8) A sector of a circle has central angle 10° and arc length 6.5 mm . Find its radius.
9) A sector of a circle has central angle 30° and arc length 3.5 cm . Find its area.
10) A sector of a circle has central angle 24° and arc length 8.4 cm . Find its area.
11) 3 cm $9 \mathrm{~cm}^{2}$
12) 5 cm
$27.5 \mathrm{~cm}^{2}$
13) 5 cm ($\begin{aligned} & \text { cm }\end{aligned}$
14) 10 cm
5 cm
15) 30 cm
6 cm
16) 24.43 in
17) 37.24 mm
18) 15 cm $37.5 \mathrm{~cm}^{2}$
19) $11.70 \mathrm{~cm}^{2}$
20) $84.22 \mathrm{~cm}^{2}$
