Use the arc length and area formulas (for sectors) to find the missing measures. Round all answers to nearest hundredth.

If θ is in degrees:	$s = \frac{\theta}{360} \cdot 2\pi r$	$K = \frac{\theta}{360} \cdot \pi r^2$
If $ heta$ is in radians:	$s = r \theta$	$K = \frac{1}{2} \cdot r^2 \theta$

1) A sector of a circle has radius 6 cm and central angle 0.5 radians. Find its arc length and area.

2) A sector of a circle has radius 5 cm and central angle 3 radians. Find its arc length and area.

3) A sector of a circle has arc length 11 cm and central angle 2.2 radians. Find its radius and area.

4) A sector of a circle has arc length 2 cm and central angle 0.4 radians. Find its radius and area.

5) A sector of a circle has area 25 cm² and central angle 0.5 radians. Find its radius and arc length.

6) A sector of a circle has area 90 cm^2 and 0.2 radians. Find its radius and arc length.

7) A sector of a circle has central angle 175° and radius 8 inches. Find its arc length.

8) A sector of a circle has central angle 10° and arc length 6.5 mm. Find its radius.

9) A sector of a circle has central angle 30° and arc length 3.5 cm. Find its area.

10) A sector of a circle has central angle 24° and arc length 8.4 cm. Find its area.

1) 3 cm	3) 5 cm	5) 10 cm	7) 24.43 in	
9 cm ²	27.5 cm ²	5 cm	8) 37.24 mm	
2) 15 cm	4) 5 cm	6) 30 cm	9) 11.70 cm ²	
37.5 cm ²	5 cm ²	6 cm	10) 84.22 cm ²	