Solve the given triangle (find all missing angles and sides). Give angle measures to nearest tenth of a degree and lengths to three significant digits.

1) $\operatorname{In} \triangle A B C, \angle A=90^{\circ}, \angle B=25^{\circ}$ and $a=18$.

2) In $\triangle \mathrm{PQR}, \angle \mathrm{P}=90^{\circ}, \angle \mathrm{Q}=64^{\circ}$ and $\mathrm{p}=27$.
3) In $\triangle \mathrm{DEF}, \angle \mathrm{D}=90^{\circ}, \angle \mathrm{E}=12^{\circ}$ and $\mathrm{e}=9$.
4) In $\triangle X Y Z, \angle X=90^{\circ}, \angle Y=37^{\circ}$ and $z=25$.
5)

6)

7) Use the diagram in \#5 to find the following.
a) $\sin Y$
b) $\cos \mathrm{L}$
c) $\tan Y$
d) $\cot \mathrm{L}$
e) $\sec Y$
f) $\csc L$

For the following problems, make sure to make a diagram to represent the information given.
8) An airplane is at an elevation of $35,000 \mathrm{ft}$. when it begins its approach to the airport. Its angle of descent is 6°.
a) What is the distance between the airport and the point on the ground directly below the plane?
b) What is the approximate air distance between the plane and the airport?

9) A lighthouse keeper observes that there is a 3° angle of depression between the horizontal and the line of sight to a ship. If the keeper is 19 m above the water, how far is the ship from the lighthouse?
10) A student looks out a secondstory window and sees the top of the school flagpole at an angle of elevation of 22°. The student is 18 ft above ground, and 50 ft from the flagpole. How tall is the flagpole?
11) For an observer at point $A, 250 \mathrm{~m}$ from a building, the angle of elevation to the top of the building is 5°.
a) Use the arc length formula $s=r \theta$ to approximate $B C$.
b) Use right triangle trigonometry to find $B C$ more accurately.

1) $\angle \mathrm{C}=65^{\circ}$	3) $\angle \mathrm{F}=78^{\circ}$	5) $\mathrm{s}=13$	7a) $5 / 13$	8a) $\approx 333,003 \mathrm{ft}$
$\mathrm{b}=7.61$	$d=43.3$	$\angle \mathrm{L}=67.4^{\circ}$	b) $5 / 13$	b) $\approx 334,837 \mathrm{ft}$
$\mathrm{c}=16.3$	$f=42.3$	$\angle \mathrm{Y}=22.6^{\circ}$	c) $5 / 12$	9) $\approx 363 \mathrm{~m}$
2) $\angle R=26^{\circ}$	4) $\angle Z=53^{\circ}$	6) $0=4.23$	d) $5 / 12$	10) $\approx 38.2 \mathrm{ft}$
$\mathrm{q}=24.3$	$\mathrm{x}=31.3$	$\angle \mathrm{F}=66^{\circ}$	e) $13 / 12$	11a) $\approx 21.8 \mathrm{~m}$
$r=11.8$	$y=18.8$	$\angle \mathrm{O}=24^{\circ}$	f) $13 / 12$	b) $\approx 21.9 \mathrm{~m}$

