CRM
SECTION 1A

POINTS \& LINES

How far from Cleveland to Marietta?

If New Philadelphia is exactly half way between Marietta \& Cleveland, at what coordinates would it be located on the map grid?

$$
\begin{aligned}
& =\left(\frac{1+17}{2}, \frac{2+8}{2}\right) \\
& =\left(\frac{18}{2}, \frac{10}{2}\right) \\
& =(9,5)
\end{aligned}
$$

$$
=\left(\frac{3+11}{2}, \frac{2+8}{2}\right)
$$

$$
=\left(\frac{14}{2}, \frac{10}{2}\right)
$$

$$
=(7,5)
$$

DISTANCE AND MIDPOINT FORMULAS

$$
\begin{aligned}
& \mathrm{D}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \mathrm{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

3) $X\left(\frac{1}{2},-\frac{1}{4}\right) \& Y\left(\frac{7}{4}, \frac{11}{4}\right)$

$\begin{aligned} & d=\sqrt{(-2+5} \\ & =\sqrt{3^{2}+(-6)} \\ & =\sqrt{9+36} \\ & =\sqrt{45} \\ & =3 \sqrt{5} \end{aligned}$	

$d=\sqrt{\left(\frac{7}{4}-\frac{1}{2}\right)^{2}+\left(\frac{11}{4}+\frac{1}{4}\right)^{2}}$
$=\sqrt{\left(\frac{5}{4}\right)^{2}+3^{2} \ldots \ldots m i d p t .}$
$=\sqrt{\frac{25}{16}+9} \quad=\left(\frac{1 / 2+7 / 4}{2}, \frac{-1 / 4+11 / 4}{2}\right)$
$=\sqrt{\frac{169}{16}} \quad=\left(\frac{9 / 4}{2}, \frac{5 / 2}{2}\right)$
$=13 / 4 \quad$

GRAPHING \& BEYOND

EXAMPLES: Graph the equation given. Label the origin and the $\mathrm{x} \& \mathrm{y}$-intercepts as points M, U and D respectively. Find the area of $\triangle \mathrm{MUD}$.
4) $y=-\frac{1}{2} x+2$

5) $5 x-3 y=15$

$$
\begin{aligned}
& \text { Solve for } y \\
& -3 y=-5 x+15 \\
& y=5 / 3 x-5
\end{aligned}
$$

Intersection points

EXAMPLES: Graph the systems of equations, then label the intersection point.
6) $\quad \begin{aligned} & y=3 x-1 \\ & 2 x+2 y=6\end{aligned}$

$$
2 x+2 y=6
$$

$$
\begin{aligned}
& \text { Solve for } y \\
& \begin{array}{l}
2 y=-2 x+6 \\
y=-x+3
\end{array}
\end{aligned}
$$

7) $2 x+5 y=10$

$$
3 x+4 y=12
$$

SOLVING SYSTEMS WITHOUT GRAPHING

Do you remember solving systems of equations algebraically? Does the substitution and/or elimination method ring a bell? Resolve \#6 with the substitution method and \#7 with elimination.

EXAMPLES:

6) $y=3 x-1$
$2 x+2 y=6$

SUBSTITUTION

$$
\begin{aligned}
& \text { Plug the first equation into the second. } \\
& \begin{array}{ll}
2 x+2(3 x-1)=6
\end{array} \\
& \begin{array}{ll}
2 x+6 x-2=6 & \\
8 x-2=6 & \\
8 x=8 & y=3(1)-1 \\
x=1 & y=2
\end{array}
\end{aligned}
$$

7) $2 x+5 y=10$
$3 x+4 y=12$

ELIMINATION

Multiply either (or both) equations by something so one variable will cancel.

$$
\begin{array}{r}
(3) \cdot 2 x+5 y=10 \rightarrow \quad 6 x+15 y=30 \\
\left.(-2) \cdot 3 x+4 y=12 \rightarrow \begin{array}{c}
-6 x-8 y=-24 \\
7 y
\end{array}\right) \\
y=6
\end{array}
$$

Plug $y=6 / 7$ in to either equation.

$$
\begin{align*}
& 2 x+5(6 / 7)=10 \\
& 2 x+30 / 7=10 \\
& 2 x=40 / 7 \quad x=20 / 7 \tag{20/7,6/7}
\end{align*}
$$

STRETCH YER' BRAINS!

Determine (prove) that quadrilateral $\boldsymbol{A B C D}$ is a parallelogram.
$\mathrm{A}(1,7), \mathrm{B}(3,5), \mathrm{C}(4,-1), \mathrm{D}(2,1) \quad$ Good luck and may the force be with you. $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Drawing it would help, but as you hopefully learned in Geometry, a drawing proves nothing.

A parallelogram has opposite parallel sides. Show that AB \& CD are parallel, and $\mathrm{AD} \& \mathrm{BC}$ are parallel:

$$
\begin{aligned}
\mathrm{AB}_{\mathrm{m}}= & \mathrm{CD}_{\mathrm{m}}= \\
\frac{5-7}{3-1}=\frac{-2}{2}=-1 & \frac{1-(-1)}{2-4}=\frac{2}{-2}=-1 \\
\mathrm{AD}_{\mathrm{m}}= & \mathrm{BC}_{\mathrm{m}}= \\
\frac{1-7}{2-1}=\frac{-6}{1}=-6 & \frac{-1-5}{4-3}=\frac{-6}{1}=-6
\end{aligned}
$$

