...given two (or more) sets of coordinates
Examples:

1) $(-6,4) \&(-1,-6) \quad \frac{-6-4}{-1-(-6)}=\frac{-10}{5}=-2$
2) $(6,-3) \&(-0.5,-3) \quad \frac{-3-(-3)}{-0.5-6}=\frac{0}{-6.5}=0$
3) $(10,-4) \&(10,7) \quad \frac{7-(-4)}{10-10}=\frac{11}{0}=$ undefined

$$
\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

...given the equation of a line
Find the slope (\& y-intercept)
Examples:

1) $y=-8 x-17$
2) $3 y+5 x=18$

3) $\frac{1}{2} x=6-5 y$

$$
\begin{array}{ll}
x=12-10 y & \\
x-12=-10 y & m=-1 / 0 \\
y=-1 / 10 x+6 / 5 & b=6 / 5
\end{array}
$$

4) $x=-2$

> cannot get " y " by itself, therefore no slope -intercept form $\quad m=$ undefined $\quad b=$ none

Graph each set of equations, THEN MAKE A "USEFUL" OBSERVATION

HOW CAN YOU DETERMINE IF THE EQUATIONS OF TWO LINES WHEN GRAPHED ARE PARALLEL? PERPENDICULAR? OR NEITHER?

Equations of parallel lines have the same slope.
Perpendicular lines have negative reciprocal slopes. Otherwise, they are neither.

AND BEYOND. \qquad
Slope formula:

$$
\frac{-12-4}{-5-(-1)}=\frac{-16}{-4}=4
$$

1) Show that the line passing thru the points $(-1,4) \&(-5,-12)$ is perpendicular to the line with equation:
$4 y+x=-6$

$$
\begin{aligned}
& 4 y=-x-6 \\
& y=-1 / 4 x-3 / 2
\end{aligned}
$$

Since the slopes are +4 and $-1 / 4$, they are negative reciprocals, and therefore perpendicular.
2) Determine if quadrilateral SLOW is a "rhombus", "square" or "kite"
$S(-1,-1) ; L(9,4) ; O(20,6) ; W(10,1)$

Homework:

Slope of $\mathrm{SL}=\frac{4-(-1)}{9-(-1)}=\frac{5}{10}=\frac{1}{2} \quad$ Slope of $\mathrm{LO}=\frac{6-4}{20-9}=\frac{2}{11}$
Since these two slopes are not perpendicular, SLOW cannot be a square.
Slope of OW $=\frac{1-6}{10-20}=\frac{-5}{-10}=\frac{1}{2} \quad$ Slope of $\mathrm{SW}=\frac{1-(-1)}{10-(-1)}=\frac{2}{11}$
A rhombus \& parallelogram have opposite slopes parallel, a kite does not. Therefore, SLOW is not a kite. If necessary, use the distance formula to determine if SLOW is a rhombus or a parallelogram.

