COLLEGE REVIEW MATH SECTION 1D

LINEAR FUNCTIONS AND MODELS

The importance of zero....

a) Model the net income as a function of the number of tickets sold.

$$
n(x)=5 x-200
$$

b) Identify the point at which the class begins to make a profit.

$$
\begin{array}{ll}
5 x-200>0 & \\
5 x>200 & \text { Every ticket sold after the } \\
x>40 & 40^{\text {th }} \text { one is profit. }
\end{array}
$$

c) What is their profit if they sell 75 tickets?

$$
\begin{aligned}
& \begin{aligned}
\mathrm{n}(\mathrm{x}) & =5 \mathrm{x}-200 \\
\mathrm{n}(75) & =5(75)-200 \\
& =375-200 \\
& =175 \\
\$ 175 & \text { profit }
\end{aligned}
\end{aligned}
$$

Examples:

1) If $f(x)=\frac{2}{3} x-12 \quad$ find: $\mathrm{f}(9), \mathrm{f}(-12)$, and the zero of the function

$$
\begin{aligned}
\mathrm{f}(9) & =2 / 3(9)-12 \\
& =6-12 \\
& =-6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f}(-12) & =2 / 3(-12)-12 \\
& =-8-12 \\
& =-20
\end{aligned}
$$

$$
0=2 / 3 x-12
$$

$$
12=2 / 3 x
$$

$$
18=x
$$

$$
\text { the function's zero is } 18
$$

2) If $g(x)=\frac{3 x-11}{2} \quad$ determine if $g(3)+g(5)=g(8)$

$$
\begin{aligned}
& \mathrm{g}(3)=3(3)-11 / 2 \\
&==(9-11) / 2 \\
&==-2 / 2 \\
&=
\end{aligned} \quad \begin{array}{r}
\mathrm{g}(5)=3(5)-11 / 2 \\
=(15-11) / 2 \\
=4 / 2 \\
=2
\end{array} \quad \begin{array}{r}
\mathrm{g}(8)=3(8)-11 / 2 \\
=(24-11) / 2 \\
=13 / 2 \\
=6.5
\end{array}
$$

NO.
$-1+2 \neq 6.5$
3) If $h(x)=8$
find: $h(0), h(412)$ and determine the slope of the function

$\mathrm{h}(0)=8$ since there is nothing to plug in $\mathrm{h}(0)$ is literally 8	$\mathrm{h}(412)=8$ $=8$

The function $\mathrm{h}(\mathrm{x})=8$ is called a constant function (there is no variable attached to the 8). Constant functions are horizontal lines so $\mathrm{m}=0$

Modeling a linear function by graphing...
Examples: In each of the cases below assume f is a linear function.
Sketch its graph, and find an equation such that...

1) $f(-2)=1$ and $f(2)=-5$

$$
\begin{array}{lr}
\mathrm{m}=-3 / 2 \text { (count rise over run) } \\
\mathrm{y}=-3 / 2 \mathrm{x}+\mathrm{b} \quad \text { plug in either pt. } \\
1=-3 / 2(-2)+\mathrm{b} & \\
1=3+b & \\
-2=b & f(x)=-3 / 2 x-2
\end{array}
$$

2) $f(1)=3$ and $f(-4)=2$

$$
\begin{aligned}
& \mathrm{m}=1 / 5 \\
& \mathrm{y}=1 / 5 \mathrm{x}+\mathrm{b} \\
& 3=1 / 5(1)+\mathrm{b} \\
& 3=1 / 5+\mathrm{b} \\
& 14 / 5=\mathrm{b}
\end{aligned}
$$

Modeling a linear function with data...

Mr. McConnell	Monday	Tuesday	Wednesday	Thursday	Friday
Times seen	4	1	9	6	5
Smart comments	14	5	29	20	17

Write a linear function to represent the number of smart comments Mr. McConnell will deliver as a function of the number of times you see him on any given day.

Treat the data like a set of coordinates, pick any two to determine a slope.
$\mathrm{m}=\frac{5-14}{1-4}=\frac{-9}{-3}=3$
$\mathrm{y}=3 \mathrm{x}+\mathrm{b} \quad$ pick one of the two you
$5=3(1)+b \quad$ to plug in
$2=\mathrm{b}$
$\mathrm{M}(\mathrm{x})=3 \mathrm{x}+2$

