COLLEGE REVIEW MATH

SECTION 1F

Name the (4) ways you have learned to solve a quadratic equation:

1) factoring
by FACTORING...
2) $x^{2}-4 x-21=0$

$$
(x-7)(x+3)=0 \quad x=7,-3
$$

3) $12 n^{2}-16 n=0$

$$
4 n(3 n-4)=0 \quad n=0,4 / 3
$$

by COMPLETING THE SQUARE...
2) complete the square
3) quadratic formula
4) graph (x-intercepts)

\qquad
5) $\mathrm{b}^{2}+12 \mathrm{~b}=28$
$\mathrm{b}^{2}+12 \mathrm{~b}+36=28+36$

$$
(b+6)^{2}=64
$$

square root both sides

$$
b+6= \pm 8
$$

$$
\mathrm{b}= \pm 8-6
$$

$$
\mathrm{b}=8-6 \quad \text { and } \quad \mathrm{b}=-8-6
$$

$$
b=2 \text { and } b=-14
$$

2) $6 y^{2}+19 y+8=0$

$$
(2 y+1)(3 y+8)=0 \quad y=-1 / 2,-8 / 3
$$

4) $(x-10)(x+2)=-35$

$$
\begin{array}{|l}
x^{2}+2 x-10 x-20=-35 \\
x^{2}-8 x-20+35=0 \\
x^{2}-8 x+15=0 \\
(x-3)(x-5)=0 \quad x=3,5 \\
\hline
\end{array}
$$

6) $\begin{array}{ll}y^{2}-8 y-2=0 & 7) \\ 4 x^{2}-12 x+18=0\end{array}$

$$
\begin{array}{|l|}
\mathrm{y}^{2}-8 \mathrm{y} \\
=2
\end{array} \begin{array}{|l}
\text { Must have a leading }
\end{array}
$$

$$
y^{2}-8 y+16=2+16
$$

$$
(y-4)^{2}=18
$$

$$
y-4=\sqrt{18}
$$

$$
y-4=\sqrt{9} \sqrt{2}
$$

$$
y-4= \pm 3 \sqrt{2}
$$

$$
y=4 \pm 3 \sqrt{2}
$$

$$
\begin{aligned}
& \text { coefficient of } 1 \text {, so divide by } 3 \\
& \mathrm{x}^{2}-4 \mathrm{x}+6=0 \\
& \mathrm{x}^{2}-4 \mathrm{x}-=-6 \\
& \mathrm{x}^{2}-4 \mathrm{x}+4=-6+4 \\
& (\mathrm{x}-2)^{2}=-2 \\
& x-2= \pm i \sqrt{2} \\
& x=2 \pm i \sqrt{2} \\
& \hline
\end{aligned}
$$

8) $8 x^{2}+18 x-5=0$
$=\frac{-18 \pm \sqrt{18^{2}-4(8)(-5)}}{2(8)}$
$=\frac{-18 \pm \sqrt{484}}{16}$
$=\frac{-18 \pm 22}{16}$
$=\frac{-18+22}{16}$ and $\frac{-18-22}{16}$
$b=1 / 4$ and $b=-5 / 2$
9) $4 x^{2}+4 x+1=0$

$$
\begin{aligned}
& =\frac{-4 \pm \sqrt{4^{2}-4(4)(1)}}{2(4)} \\
& =\frac{-4 \pm \sqrt{16-16}}{8} \\
& =\frac{-4 \pm \sqrt{0}}{8}=\frac{-4}{8} \\
& x=-1 / 2
\end{aligned}
$$

10) $x^{2}+3 x+8=5$

$$
\begin{aligned}
& x^{2}+3 x+3=0 \\
& =\frac{-3 \pm \sqrt{3^{2}-4(1)(3)}}{2(1)} \\
& =\frac{-3 \pm \sqrt{9-12}}{2} \\
& =\frac{-3 \pm \sqrt{-3}}{2} \\
& x=\frac{-3 \pm i \sqrt{3}}{2}
\end{aligned}
$$

More fun with quadratic equations:
11) Solve with whichever method you feel is best $\quad \frac{1}{a+4}=\frac{a-4}{6 a}$
$(1)(6 a)=(a+4)(a-4)$
$6 a=a^{2}-16$
$0=a^{2}-6 a-16$
$0=(a-8)(a+2)$
$\mathrm{a}=8$ and $\mathrm{a}=-2$

$$
\begin{aligned}
& \frac{3 x}{2}=\frac{5 x+4}{x} \\
& 3 x(x)=2(5 x+4) \\
& 3 x^{2}=10 x+8 \\
& 3 x^{2}-10 x-8=0 \\
& (x-4)(3 x+2)=0 \\
& x=4 \text { and } x=-2 / 3, \text { but a } \\
& \text { distance cannot be negative, } \\
& \text { so } \mathrm{x}=4 \text { only! }
\end{aligned}
$$

To complete the square or not to complete the square (that is the question)...
Explain why \#1 and \#2 should probably be avoided with the complete the square method, but why \#3 is a go?

1) $\mathrm{x}^{2}-13 \mathrm{x}-4=0$
2) $5 n^{2}+25 n=100$
3) $7 y^{2}-14 y+49=28$
$\# 1$ has an odd number as its middle term. Taking $1 / 2$ and squaring would create several fractions.
$\# 2$ must be divided by 5 first leaving 5 n as the middle term, and therefore creating the same problem
as \#1. \#3 must be divided by 7 first. Not only do all parts divide evenly, but the middle term would
be $-2 y$ which can easily be taken half of and squared.
