College Review Math Section 2B

The Remainder Theorem

When a polynomial P(x) is

Your turn:

is P(a)

The Factor Theorem

For a polynomial P(x), x - a is a factor if and only if P(a) = 0

Determine if the 2^{nd} polynomial is a factor of the first one.

Example:
$$x^3 + x^2 - 10x + 8$$
; $x + 4$

It is because the How can you tell if it is or isn't a factor? remainder was "zero".

The Factor Theorem		Example	$x^3 + x$	$^{2}-10x+8=$	= 0; root =	-4
Finding the remaining roots for a polynomial equation. (given one or more roots to start)		-4	4 <u>1</u> <u>1</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 8 -8 0	
		How can the two r	you determ emaining ro $1x^2 - 3x + 2$ (x - 2)(x - 1) x = 2 and $x = 2$	ine ots? Reinse = 0 = 0 = 1	rt the varial	ble, th <mark>en factor.</mark>
Your turn:	3) $3x^3 + 2x^2 - 27x - $ root; $x = 3$	18 = 0	4)	$x^4 + 2x^3 -$ roots; x =	$10x^2 + 10x$ = -5, x = 3	-75 = 0
3	$3 2 -27 -18$ 9 33 18 3 11 6 0 $3x^{2} + 11x + 6 = 0$ (3x + 2)(x + 3) = 0 x = -2/3 and x = -3 5) 8x^{4} + 32x^{3} - x - 4 8 32 0 -1 -32 0 0 8 0 0 -1	$= 0 \qquad \text{rc}$ $= \frac{-4}{0}$	$ \frac{-5}{3} = \frac{1}{1} $ poot; $x = -4$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10 \\ -25 \\ -15 \\ 15 \\ 0 \\ \hline e 1x^2 + 5 \\ e \text{ another } v \\ 5 = 0 \\ -5 \text{ square } 1 \\ \pm i \sqrt{5} \end{array}$	-75 <u>75</u> 0 loes not factor, vay root both sides
	$8x^{3} - 1 = 0$ (2x - 1)(4x ² + 2x + 1) = x = 1/2, use quadratic for x = .3 ± .4i	$\frac{0}{0}$ or $\frac{-14}{0}$	$\frac{\pm i\sqrt{3}}{4}$			