Find the roots for each polynomial function.

1)
$$f(x) = x(x-3)(x+4)$$

 $x = _0, 3, -4$
 $x = _0, 7, -6$
2) $y = x^2(x-7)(x+6)$
 $x = _0, 7, -6$

**Now consider the graphs for each using your graphing calculator. What interesting coincidence occurs for each? For #2, change the WINDOW settings so that y-min = -100 and y-

max = 100

The graph intersects the x-axis at the solutions.

**How was the shape of the graph different in #2 compared to #1?

l	It touched, but did not cross the x-axis at $x = 0$.
l	(did a U-turn)

3)
$$y = (x + 5)(x - 1)^2$$
 4) $y = x^3(x + 3)(x - 5)^2$

**You may want to reset the WINDOW for #4 to -1000 & 1000 for the y, and -6 & 6 for the x

x = ____0, -3, 5

**How did the graph for #4 differ?

The graph for #4 snaked (or twisted) through the x-axis at x = 0

TYPES OR ROOTS: SINGLES, DOUBLES OR TRIPLES
A single root (or exponent of 1) passes *directly thru* the x-axis at the root.
A double root (or exponent of 2) *changes direction* at the x-axis (or it forms a "U" at the root.
A triple root (or exponent of 3) *twists* its way thru the x-axis at the root.

Determine how many of each type of root (single, double or triple) each function has.

1) $f(x) = (x - 10)(x + 1)^{2}(x - 2)$ single: 2 double: 1 triple: 0 $f(x) = -3x^{2}(x + 4)^{3}(x + 9)(x + 7)^{2}$ $g(x) = -3x^{2}(x + 4)^{3}(x + 9)(x + 7)^{2}$ $g(x) = -3x^{2}(x + 4)^{3}(x + 9)(x + 7)^{2}$ $g(x) = -3x^{2}(x + 4)^{3}(x + 9)(x + 7)^{2}$

SIGN ANALYSIS

Determine if the graph for each function is above or below the x-axis for each value given. Simply plug the number in to the equation, keeping track of the sign for each portion.

EXAMPLE:
$$f(x) = x^{3}(x-7)(x+2)^{2}$$
 @x = -1

plug in each part&

keep track of sign:

 x^{3} : (-1)³ = negative (x - 7) (-1 - 7) = negative $(x + 2)^{2}$ $(-1+2)^{2}$ = positive answer = negative X negative X positive = positive

Therefore, x@-1 is above the x-axis

1) $f(x) = (x + 11)^{2}(x - 4)(x + 4)$ @x = -3

 $(-3 + 11)^2$, short cut; anything² = positive (-3 - 4) = negative(-3+4) = positiveanswer = positive X negative X positive = negative

Therefore, x@-3 is below the x-axis

GRAPH USING SIGN ANALYSIS & TYPE OF ROOT

Given the graph, write one possible equation for the polynomial function.

Now, for the graph from #2, using the given coordinates (1, 4), come up with the exact equation.

 $y = a(x + 3)(x - 3)^{3}$ $4 = a(1 + 3)(1 - 3)^{3} \quad \text{plug in } (1, 4)$ $4 = a(4)(-2)^{3}$ 4 = a(4)(-8) 4 = -32a a = -1/8 $y = -1/8(x + 3)(x - 3)^{3}$

Homework: pg66-68 21-24, 27-32