the roots for each polynomial function.

1) $\quad f(x)=x(x-3)(x+4)$
$x=0,3,-4$ \qquad
2) $y=x^{2}(x-7)(x+6)$
$x=0,7,-6$
**Now consider the graphs for each using your graphing calculator. What interesting coincidence occurs for each? For \#2, change the WINDOW settings so that y - $\mathrm{min}=-100$ and y $\max =100$

The graph intersects the x-axis at the solutions.
**How was the shape of the graph different in \#2 compared to \#1?

> It touched, but did not cross the x-axis at $x=0$. (did a U-turn)
3)
$y=(x+5)(x-1)^{2}$
4) $y=x^{3}(x+3)(x-5)^{2}$
\qquad $x=0,-3,5$
**You may want to reset the WINDOW for \#4 to -1000 \& 1000 for the y , and $-6 \& 6$ for the x **How did the graph for \#4 differ?

The graph for \#4 snaked (or twisted) through the x-axis at $x=0$

TYPES OR ROOTS: SINGLES, DOUBLES OR TRIPLES
A single root (or exponent of 1) passes directly thru the x-axis at the root.
A double root (or exponent of 2) changes direction at the x-axis (or it forms a " \mathbf{U} " at the root.

A triple root (or exponent of 3) twists its way thru the x-axis at the root.

Determine how many of each type of root (single, double or triple) each function has.

1) $f(x)=(x-10)(x+1)^{2}(x-2)$
2) $f(x)=-3 x^{2}(x+4)^{3}(x+9)(x+7)^{2}$
single: 2
double: \qquad
triple: \qquad 0
single: 1
double: 2
triple: 1

SIGN ANALYSIS

Determine if the graph for each function is above or below the x-axis for each value given.
Simply plug the number in to the equation, keeping track of the sign for each portion.

EXAMPLE: $\quad f(x)=x^{3}(x-7)(x+2)^{2} @ x=-1$
plug in each part\&
keep track of sign: $\quad x^{3}: \quad(-1)^{3}=$ negative
$(x-7) \quad(-1-7)=$ negative
$(x+2)^{2}(-1+2)^{2}=$ positive
answer $=$ negative X negative X positive $=$ positive

Therefore, x@-1 is above the x-axis

1) $f(x)=(x+11)^{2}(x-4)(x+4) @ x=-3$

$$
\begin{aligned}
& (-3+11)^{2} \text {, short cut; anything }{ }^{2}=\text { positive } \\
& (-3-4)=\text { negative } \\
& (-3+4)=\text { positive } \\
& \text { answer }=\text { positive } X \text { negative } X \text { positive }=\text { negative }
\end{aligned}
$$

Therefore, $x @-3$ is below the x-axis

GRAPH USING SIGN ANALYSIS \& TYPE OF ROOT

Given the graph, write one possible equation for the polynomial function.

Using sign analysis at (-4) shows the graph to be correct only if the negative sign is added to the equation.

Now, for the graph from \#2, using the given coordinates $(1,4)$, come up with the exact equation.

$$
\begin{aligned}
& y=a(x+3)(x-3)^{3} \\
& 4=a(1+3)(1-3)^{3} \quad \text { plug in }(1,4) \\
& 4=a(4)(-2)^{3} \\
& 4=a(4)(-8) \\
& 4=-32 a \\
& a=-1 / 8 \\
& y=-1 / 8(x+3)(x-3)^{3}
\end{aligned}
$$

