THE LOCATION PRINCIPLE

Use the table of values below to name the two integers in which a real root must fall between.
1)

x	-1	0	$\mathbf{1}$	$\mathbf{2}$	3
$f(x)$	12	4	1	-3	-11

Root exists between: $\quad x=1$ and $x=2$
Think of a "root" as an x-intercept of a graph. The y-values must change from a positive to a negative (or vice versa) in order for the graph to cross the x-axis.

Using the table, determine how many real roots can be approximated. Then, name the integers in which each root lies between.
2)

x	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
$f(x)$	-0.9	-0.2	0.5	1.5	0.2	-2	-2	3	6	3	1	-10	-50

Number of real roots: \qquad

Roots exist between:

$$
x=-5 \& x=-4, x=-2 \& x=-1, x=0 \& x=1, x=4 \& x=5
$$

This information will appear on your next quiz, but we will not waste our time doing homework

