Section 2F

2) $3 x^{3}+5 x^{2}-12 x-20=0$

$3 x^{3}-12 x+5 x^{2}-20=0$	
$3 x\left(x^{2}-4\right)+5\left(x^{2}-4\right)=0$	
$\left(x^{2}-4\right)(3 x+5)=0$	
$(x-2)(x+2)(3 x+5)=0$	
$x=2, x=-2, x=-5 / 3$	

3) $3 y^{5}+9 y^{3}+24 y^{2}=-72$
4) $x^{4}+4 x^{2}-3 x^{3}-12 x+2 x^{2}+8=0$

$$
\begin{aligned}
& x^{2}\left(x^{2}+4\right)-3 x\left(x^{2}+4\right)+2\left(x^{2}+4\right)=0 \\
& \left(x^{2}-3 x+2\right)\left(x^{2}+4\right)=0 \\
& (x-2)(x-1)\left(x^{2}+4\right)=0 \\
& x=2, x=1, \quad x^{2}+4=0 \\
& x^{2}=-4 \\
& x= \pm 2 i
\end{aligned}
$$

(Quadratic Form)

Question: Why is the problem $4 x^{2}-10 x-15=0$ easy to do?
It's a quadratic equation which can be factored or solved using the quadratic formula. With that in mind...
5)

7) $x^{6}+7 x^{3}-8=0$

$$
\begin{array}{|l}
\begin{array}{|l}
z^{2}+7 z-8=0 \\
(z+8)(z-1)=0 \\
z=-8, \quad z=1
\end{array} \\
x^{3}=-8 \text { and } x^{3}=1 \\
x^{3}+8=0, x^{3}-1=0 \\
(x+2)\left(x^{2}-2 x+4\right)=0,(x-1)\left(x^{2}+x+1\right)=0
\end{array}
$$

6) $6 y^{4}+17 y^{2}=14$

$6 x^{2}+17 x-14=0$
$(3 x-2)(2 x+7)=0$
$x=2 / 3, x=-7 / 2$
$y^{2}=2 / 3, \quad y^{2}=-7 / 2$
$y= \pm .8, y= \pm 1.9 i$

8) $z^{4}+3 z^{2}-54=0$

$x^{2}+3 x-54=0$
$(x+9)(x-6)=0$
$x=-9, \quad x=6$
$z^{2}=-9$ and $z^{2}=6$
$z= \pm 3 i, z= \pm \sqrt{6}$

** with approximations
The final answers have been rounded. Should you choose to use the quad-program at any point, the solutions will not be 100% accurate.
** likely to see on a quiz

$$
x=-2, x=1 \pm 1.7 i, \quad x=1, x=-.5 \pm .9 i
$$

Find all the zeros (roots, solutions, answers) to the following polynomial equations, but first answer the questions.

1) $3 x^{3}+13 x^{2}-32 x-12=0$

Can you group it? Does have 4-parts, but will not group.

Can you use quadratic substitution? No, too many parts.

Then what do you do?
Construct a p \& q-factor list, and choose a "potential" root from the list. Using trial and error and synthetic division, find a number that gives you a remainder of zero, then...

Listing the "potential roots" using the RATIONAL ROOT THEOREM

Examples (list the p, q, and p / q 's only - you do not need to solve the equation)
2) $1 x^{7}-3 x^{4}+9 x^{3}+x+32=0 \quad p$-factor
\qquad
$\mathrm{p}: \pm 1,2,4,8,16,32$
3) $9 x^{3}+\mathrm{x}^{2}+8 \mathrm{x}-4=0$
p.
$\mathrm{p}: \pm \underline{1,2,4}$
$\mathrm{q}: \pm 1$
$\mathrm{q}: \pm 1,3,9$
$p / q: \pm 1,2,4,8,16,32$
$p / q: \quad \pm 1,2,4,1 / 3,2 / 3,4 / 3,1 / 9,2 / 9,4 / 9$

Examples: Use the rational root theorem to
find all zeros (real and imaginary) for each polynomial equation
4) $5 x^{3}-3 x^{2}-20 x+12=0$
5) $x^{4}-12 x^{3}+37 x^{2}-12 x+36=0$

Work for problems 4-6 are on the next page.
6) $3 x^{4}+15 x^{3}+10 x^{2}-10 x-8=0$

