GENERAL RESULTS FOR POLYNOMIAL EQUATIONS

(A) FIND THE COINCIDENCE

Solve the equation

$$
\begin{aligned}
& x^{2}+5 x-24=0 \\
& (x+8)(x-3)=0 \\
& x=-8 \text { and } x=3
\end{aligned}
$$

by factoring

What is the sum of the roots? $\quad-8+3=-5$
What is the product of the roots? $\quad(-8)(3)=-24$

Coincidence?
The sum of the roots gives you the middle term (opposite sign), the product of the roots gives you the last term.

Solve the equation
by factoring

$$
\begin{aligned}
& 6 x^{2}+11 x+3=0 \\
& \hline(3 x+1)(2 x+3)=0 \\
& x=-1 / 3 \text { and } x=-3 / 2 \\
& \hline
\end{aligned}
$$

What is the sum of the roots? $-1 / 3+(-3 / 2)=-11 / 6 \quad$ Coincidence? What is the product of the roots? $\quad(-1 / 3)(-3 / 2)=3 / 6$

The same as the previous problem, but in addition, the denominator for both is the first term.

(B) APPLY THE COINCIDENCE

Find the sum \& product of the roots for without solving it!

$$
\begin{aligned}
& 5 x^{2}-7 x+10=0 \\
& \text { Sum: }-(-7) / 5=7 / 5 \\
& \text { Prod: } 10 / 5=2
\end{aligned}
$$

(C) WRITE THE EQUATION GIVEN THE ROOTS BY USING THE SUM \& PRODUCT

1) Roots: -3 and $\frac{2}{3}$

Sum: $-3+2 / 3=-7 / 3$
Prod: $-3(2 / 3)=-2$
In order to find " a ", the denominators must match so... Prod: $-2=\underline{-6 / 3}$

$$
3 x^{2}+7 x-6=0
$$

2) Roots: $2 \pm \sqrt{5}$

Sum: $2+\sqrt{5}+2-\sqrt{5}$
$=4$ or $4 / 1$
Prod: $(2+\sqrt{5})(2-\sqrt{5})$
$=4-\sqrt{25}$
$=4-5=-1$ or $-1 / 1$
$x^{2}-4 x-1=0$
3) Roots: $1 \pm 3 i$

$$
\begin{aligned}
& \text { Sum: } \begin{aligned}
& 1+3 i+1-3 i \\
&=2 \text { or } \underline{2 / 1} \\
& \text { Prod: }(1+3 i)(1-3 i) \\
&=1-9 i^{2} \\
&=1+9=10 \text { or } \underline{\mathbf{1 0} / \mathbf{1}} \\
& x^{2}- 2 x+10=0
\end{aligned}
\end{aligned}
$$

(D) WRITE THE CUBIC EQUATION GIVEN THREE ROOTS.

Roots: -2 and $3 \pm 2 \sqrt{5}$

Sum: $3+2 \sqrt{5}+3-2 \sqrt{5}=6$ or $6 / 1$
Prod: $(3+2 \sqrt{5})(3-2 \sqrt{5})$

$$
\begin{aligned}
=9-4 \sqrt{25} & =9-4(5) \\
& =-11 \text { or }-11 / 1 \\
x^{2}-6 x+11 & =0
\end{aligned}
$$

 If (-2) is also a
root, then the binomial: $(x+2)$ represents it.

So, the cubic equation $=$ $(x+2)\left(x^{2}-6 x+11\right)$ $=x^{3}-6 x^{2}+11 x+2 x^{2}-$
$12 x+22$
$x^{3}-4 x^{2}+23 x+22=0$

COMPLEX CONJUGATES THEROEM

Example: I'll give you two of the roots for the equation: $\quad x^{3}-4 x^{2}+30 x-52=0$
Roots: $2,1+5 \mathrm{i}$
Can you guess the third root?

$$
1-5 i
$$

(A) USE THE COMPLEX CONJUGATES THEOREM TO NAME ANOTHER ROOT.

1) -6-3i Another root: $\quad-6+3 i$
2) $8+2 \sqrt{7}$

Another root: \qquad $8-2 \sqrt{7}$
(B) REVIEW (WITH A TWIST). USING THE SUM \& PRODUCT OF ROOTS...
3) Find the quadratic equation with the root:

So, $\frac{3+i \sqrt{5}}{4}$ is the other root.

$$
\text { Sum: } \frac{3-i \sqrt{5}}{4}+\frac{3+i \sqrt{5}}{4}=6 / 4 \quad \text { Prod: } \frac{3-i \sqrt{5}}{4} \bullet \frac{3+i \sqrt{5}}{4}=\frac{9-i^{2} \sqrt{25}}{16}=\frac{9+5}{16}=14 / 16
$$

The two fractions must be changed so that the denominators match. So...
Sum: $\underline{\mathbf{1 2} / \mathbf{8}}$ Prod: $\underline{\mathbf{7 / 8}}$ (notice $12 / 8$ reduces, but $7 / 8$ does not, so this is the simplest possible solution) Quadratic equation: $\quad 8 x^{2}-12 x+7=0$
4) Find the quartic equation with roots: $3+2 i \& 4+i$

Sum: $3+2 i+3-2 i$

$$
=6 \text { or } 6 / 1
$$

Prod: $(3+2 i)(3-2 i)$
$=9-4 i^{2}$
$=9+4$ or 13/1

Sum: $4+i+4-i$
$=8$ or $8 / 1$
Prod: $(4+i)(4-i)$
$=16-i^{2}$
$=16+1$ or $17 / 1$

Now multiply the two equations together.
$\left(x^{2}-6 x+13\right)\left(x^{2}-8 x+17\right)$
$=x^{4}-8 x^{3}+17 x^{2}-6 x^{3}+48 x^{2}-102 x+13 x^{2}$
$-104 x+221$
Quartic equation: $x^{4}-14 x^{3}+78 x^{2}-206 x+221=0$
(C) REVERSING THE PROCESS. GIVEN AN EQUATION (AND WITHOUT FINDING THE ROOTS),

FIND THE SUM \& PRODUCT OF THE ROOTS.
5) $3 x^{2}-12 x+8=0$

Sum: $-(-12) / 3=12 / 3=4$

Prod: 8/3
6) $-4 x^{2}+2 x+40=0$

Sum: $-2 /-1=1 / 2$

Prod: $40 /-4=-10$

Sum of the roots $=\frac{-b}{a}$
Product of the roots $=\frac{c}{a}$
(D) REFINING THE SUM \& PRODUCT FORMULAS: GIVEN AN EQUATION WITH DEGREE HIGHER THAN 2, FIND THE SUM \& PRODUCT OF THE ROOTS.
7) $x^{3}-4 x^{2}+9 x+11=0$

Sum: $-(-4) / 1=4 / 1=4$
Prod: $-11 / 1=-11$
Sum: $-6 / 9=-2 / 3$
Prod: 1/9
9) $5 x^{5}+5 x^{3}-3 x^{2}+x=60$ $5 x^{5}+0 x^{4}-3 x^{2}+x-60=0$

Sum: $0 / 5=0$
Prod: $60 / 5=12$

Sum of the roots $=\frac{- \text { second term }}{\text { first term }}$
Product of the roots $=$
even degree: $\frac{\text { last term }}{\text { first term }}$
odd degree: $\frac{- \text { last term }}{\text { first term }}$

