Solutions to inequalities are found the same way you solve equations except for.
switching the inequality sign around when you divide (or multiply both sides of the equation by a negative.

Graphing solution sets to inequalities are done on a \qquad number line by shading \qquad and including either \qquad open or closed circles.

Examples:
Solve the given inequality, and graph its solution set.

1) $10-3 x>-17$

$-3 x>-27$
$x<9$

2) $\frac{2 b+9}{3} \leq-7$

$$
\begin{aligned}
2 b+9 & \leq-21 \\
2 b & \leq-30 \\
b & \leq-15
\end{aligned}
$$

3) $3(a+4)-(5 a-2)<2(8-a)$

$$
\begin{aligned}
3 a+12-5 a+2 & <16-2 a \\
-2 a+12 & <16-2 a \\
12 & <16
\end{aligned}
$$

Since the outcome is a true statement: infinitely many sol.s

ABSOLUTE VALUE INEQUALITES

4) $\quad|x|>11$
```
x>11 or }x<-1
    (great "or") (less th "and")
```

5) $\quad|3 y-7| \leq 14$

$$
\begin{aligned}
3 y-7 & \leq 14 & \text { and } & & 3 y-7 & \geq-14 \\
3 y & \leq 21 & & & 3 y & \geq-7 \\
y & \leq 7 & \text { and } & & y & \geq-7 / 3
\end{aligned}
$$

6) $2|5-2 x| \geq 10$

$$
\begin{gathered}
\left\lvert\, \begin{array}{c}
5-2 x \mid \geq 5 \\
5-2 x \geq 5
\end{array}\right. \text { or } 5-2 x \leq-5 \\
-2 x \geq 0 \quad-2 x \leq-10 \\
x \leq 0 \quad \text { or } \quad x \geq 5
\end{gathered}
$$

2-TOUGH ONES - FOR FUN!!

7) $\frac{1-3 r}{9}<\frac{2-5 r}{2}$

$$
\begin{aligned}
& 2-6 r<18-45 r \text { (cross multiply) } \\
& 2+39 r<18 \\
& 39 r<16 \\
& r<16 / 39
\end{aligned}
$$

8) $\left|\frac{4}{9} p+\frac{5}{6}\right| \leq-\frac{5}{12}$

An absolute value can never be less than a negative no. therefore: \varnothing

